哈尔滨工程大学航天与建筑工程学院, 哈尔滨 150001
中图分类号: O31
文献标识码: A
通讯作者:
收稿日期: 2017-09-27
接受日期: 2018-03-19
网络出版日期: 2019-01-15
版权声明: 2019 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
基金资助:
作者简介:
作者简介:梁立孚, 1939年生, 哈尔滨工程大学教授, 博士生导师.主要研究方向:变分原理及其应用、连续介质分析动力学和耦合分析动力学.通过长期的研究, 提出变分的逆运算------变积的概念, 建立了变积方法,使得微积分学中的积分、微分和导数在变分学中都有了对应的概念------变积、变分和变导,从而初步地将变分学扩充为变积分学.变积的建立解决了建立变分原理(含广义变分原理)难的问题; 变导的应用,结合Lagrange-Hamilton体系,解决了将Lagrange方程应用于连续介质力学和其他学科的问题.研究耦合分析动力学(或者称为分析耦合动力学);解决了将Hamilton型变分原理和Lagrange方程应用于刚--弹、刚--液、刚--弹--液等耦合系统的问题;在航空、航天、航海等领域获得重要应用.应用可变函数选值域的理论和可变函数曲线接近度的理论研究非完整系统分析动力学,较好地解释了非完整力学中的一些长期存在的但难以说明的问题,进而研究了非完整系统分析动力学的理论框架.
展开
摘要
综述了国内和国外学者研究连续介质分析动力学问题的进展,阐明了本文主要论述将Lagrange方程应用于连续介质动力学的问题.论文采用Lagrange-Hamilton体系,分别论述了非保守非线性弹性动力学、不可压缩黏性流体动力学、黏弹性动力学、热弹性动力学、刚--弹耦合动力学和刚--液耦合动力学的Lagrange方程及其应用.论述了应用Lagrange方程建立有限元计算模型的问题. 最后,展望了将Lagrange方程应用于连续介质动力学问题的研究前景.
关键词:
Abstract
First, the studying progress of domestic and foreign scholars on analytical dynamics of continuum is reviewed. This paper mainly studies the problem of applying the Lagrange equation to the continuum dynamics. By using Lagrange-Hamilton system, Lagrange equations and their applications are investigated for non-conservative nonlinear elastic dynamics, incompressible viscous fluid dynamics, viscoelastic dynamics, thermal elastic dynamics, rigid-elastic coupling dynamics and rigid-liquid coupling dynamics. The establishment of finite element calculation model by using Lagrange equation was analyzed. Finally, the prospects of applying the Lagrange equation to problems of the continuum dynamics are discussed.
Keywords:
连续介质力学研究连续介质的宏观力学行为.连续介质力学用统一的观点来研究固体和流体的力学问题.按连续统一的观点 (爱林根1991, 爱林根1985, Eringen1962)研究电磁场与连续介质的相互作用.
客观上,连续介质力学已经分成为以研究线性连续介质理论为主的古典连续介质力学和以研究非线性连续介质理论为主的近代连续介质力学.而近代连续介质力学又可分为理性连续介质力学和计算连续介质力学,前者按理性力学的观点和方法研究连续介质理论,后者把连续介质力学和电子计算机结合起来.
分析力学建立在虚功原理和达朗贝尔原理的基础上.1788年Lagrange出版的不朽名著《MécaniqueAnalytique》是世界上最早的一本分析力学的著作 (Lagrange 1788).1760---1761年, 拉格朗日把这两个原理和理想约束结合,得到了动力学的普遍方程,几乎所有的分析力学的动力学方程都是从这个方程直接或间接导出的.逐步形成分析动力学的Lagrange体系, 其核心是Lagrange方程.
1834年和1843年Hamilton分别建立了Hamilton原理和正则方程 (Hamilton 1835),把分析力学推进一步.Hamilton用代表一个系统的点的路径积分的变分原理研究各类力学问题.它的优点是可以推广到新领域和应用变分学中的近似法来解题.逐步形成分析动力学的Hamilton体系, 其核心是Hamilton原理.
由于Hamilton原理具有便于应用于其他学科和可以应用变分原理的直接方法进行近似计算的优点,使得Hamilton原理在固体动力学、刚体动力学、流体动力学、电动力学、控制理论、量子力学、统计物理学等学科都有重要的应用,相关的研究成果非常丰富, 限于篇幅,这里仅介绍连续介质力学的Hamilton原理的国外部分近期研究情况.Zenkour (1989)建立了各向异性弹性体的混合型Hamilton变分原理; Gouin(2008)基于Hamilton原理, 建立了连续介质力学的混合型变分原理;Lyakhov (1992)建立了基于Hamilton原理的锚链动力学的变分原理;Maximov(2010)对耗散性水动力学中的Hamilton型变分原理及其应用进行了研究;Kim等 (2013)建立了连续介质动力学的修正型Hamilton原理;Hanyga和Seredynska(2008)建立了黏弹性力学的Hamilton型和Lagrange型理论;Fahrenthold和Koo(1999)给出了黏性可压缩流体动力学的离散型Hamilton方程; Granados(1998)应用Hamilton原理建立了非保守和多维空间的变分原理; Yang和Liu(2017)把Lagrange方程中的自由能代替弹性体的应变能,建立了非弹性体的Hamilton原理; Altay和Dokmeci(2005)应用Hamilton原理建立了三场变分原理等.由于Hamilton原理的重要性和应用领域的广泛性,学术界对Hamilton原理的研究已经比较充分,但将Lagrange方程应用于连续介质动力学问题的研究比较欠缺,因此本文重点介绍将Lagrange方程应用于连续介质动力学问题.加强对将Lagrange方程应用于连续介质动力学问题的研究,目的是开发Lagrange方程的重要性和应用领域的广泛性.
如何将Lagrange方程应用于弹性动力学的问题,一直是各国学者关注的研究课题. 我国学者的研究是卓有成效的,注意到将分析力学从质点刚体力学扩展到弹性力学、从离散系统扩展到连续系统的问题,锲而不舍地研究将Lagrange方程应用于弹性动力学 (汪家訸 1958, 沈惠川1998, 王琪和陆启韶 2001, 陈滨和梅凤翔 1994, 梅凤翔等 1996, 陈滨 2010, 梅凤翔 2013a). 国外学者的研究也层出不穷,近期研究内容涉及Euler--Bernoulli梁理论 (Mahmoudkhani 2017),不同截面形式柱状结构的稳定性问题 (Seiranyan 1984),各向异性的壳结构 (Zhavoronok 2015), 广义位移量和柯西应力问题(Souchet 2014), 声振系统 (Kim & Senda 2007), 流致振动分析(Longatte et al. 2003). 国际知名学者Goldstein的著作《Classical Mechanics》 (Goldstein et al. 2001),从第一版到第三版都将此作为一个专题,研究将Lagrange方程应用于弹性动力学的问题,为解决这个理论难题做出重要贡献,可以代表部分国际学者对这一领域的研究的历史和现状. 但是, Goldstein 先生在研究中, 采用将弹性直杆离散为串联的弹簧的力学模型,不能涵盖弹性力学的全貌,因此还需探索其他途径来解决将Lagrange方程应用于连续介质弹性动力学的问题.本文作者应用变导的概念和运算法则,研究了Lagrange方程中的求导的性质,进而将Lagrange方程应用于线性弹性动力学 (梁立孚等 2015);冯晓九和梁立孚 (2016)将这种方法应用于非线性弹性动力学.应用这种方法也可以将Lagrange方程应用于流体力学和电动力学等学科.
关于将Lagrange方程应用于流体动力学的问题,国内和国际学者研究的较少. Lagrange在其著作《MéaniqueAnalytique》中用了较大篇幅研究流体力学, 可惜的是,由于当时自然科学发展程度的限制,这位分析力学大师未能给出适用于流体力学的Lagrange方程. 但是,Lagrange的这些研究工作,为后来各国学者力图解决这个理论难题打下良好的基础. 近年来,国际学者对这类问题进行了有益的研究. 例如, Tran-Cong(1996)研究了无条件约束的流体力学的变分原理; Irschik和Holl (2002,2015)在连续介质力学的Lagrange描述的框架中, 通过弱化Ritz近似,推导出Lagrange方程的局部形式; Auffray等(2015)证明了一个固定作用原理适用于毛细流体, 涉及到拉格朗日函数;Hean和Fahrenthold(2017)建立了多尺度热流体力学的离散型Lagrange方程.我国学者对流体力学的变分原理的研究处于领先地位 (Chien 1984, 刘高联1989, 梁立孚和石志飞1993). 如本文作者, 应用变导的概念和运算法则,将Lagrange方程应用于理想流体动力学, 推导出理想流体力学的控制方程.应用Lagrange-Hamilton体系,成功地由不可压缩黏性流体动力学的Hamilton型拟变分原理推导出不可压缩黏性流体动力学的Lagrange方程,进而推导出不可压缩黏性流体动力学的控制方程.还探讨了将Lagrange方程应用于可压缩黏性流体动力学问题,并且推导出可压缩黏性流体动力学的控制方程.可以说较全面地解决了如何将Lagrange方程应用于流体动力学的问题(梁立孚和周平2018).
关于电磁连续介质力学(含电动力学)的Hamilton原理和Lagrange方程的国内和国际的研究进展,将在本文的第8节第 (3)小节中说明.关于耦合动力学等学科的Hamilton原理和Lagrange方程的国内和国际的研究进展,将在本文的相应的节次中进行.
这里特别指出,我国学者在Lagrange系统的积分理论、对称性与守恒量领域进行了出色的研究(Mei 2000, 郭永新等 2004, 张毅等 2006, 梅凤翔和尚玫2000,张毅和梅凤翔 2004, Mei & Xu 2005, Chen et al. 2008,蔡建乐和梅凤翔2008, 梅凤翔2013b).这对解决Lagrange方程应用于连续介质力学的问题是有力的支持.
如前所述, 同样一个分析力学问题, 既可以采用Lagrange体系,建立问题的Lagrange方程来研究, 也可以采用Hamilton体系,建立问题的Hamilton原理来研究. 既然如此, 不难认识到,在Lagrange体系和Hamilton体系之间必然存在有机联系,这就是Lagrange-Hamilton体系: 对于保守系统,Lagrange方程是Hamilton原理的驻值条件; 对于非保守系统,Lagrange方程是Hamilton型拟变分原理的拟驻值条件 (梁立孚等2016).本文采用Lagrange-Hamilton体系,分别论述了非保守非线性弹性动力学、不可压缩黏性流体动力学、黏弹性动力学、热弹性动力学、刚--弹耦合动力学和刚--液耦合动力学的Lagrange方程及其应用.论述了应用Lagrange方程建立有限元计算模型的问题. 最后,展望了连续介质分析动力学的发展前景.
本文作者建立了非保守非线性弹性动力学的Hamilton原理 (梁立孚等2015).在此基础上, 应用Lagrange-Hamilton体系, 借助变导的运算,推导出非保守非线性弹性动力学的Lagrange方程,进而建立非保守非线性弹性动力学的控制方程.
非保守非线性弹性动力学一类变量的拟Hamilton原理为
$$\delta \varPi _{\rm H1} - \delta Q_{\rm H} = 0(1)$$
式中
$$\varPi _{\rm H1} = \int_{t_0 }^{t_1 } \left\{ \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} \frac{1}{2}\rho \dot {\pmb u} \cdot \dot {\pmb u}{\rm d}V - \Bigg[ \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} \Bigg( A\Bigg( \frac{1}{2}\nabla \pmb u + \frac{1}{2} \pmb u\nabla + \frac{1}{2}\nabla \pmb u \cdot \pmb u\nabla \Bigg) - \right. $$ $$\left. \pmb f \cdot \pmb u -\pmb f_{\rm N} \cdot \pmb u \Bigg){\rm d}V - \int\!\!\!\!\int\limits_{\kern-2.5pt S_\sigma } \left(\pmb T + \pmb T_{\rm N} \right) \cdot \pmb u {\rm d}S \Bigg] \right\}{\rm d}t$$ $$\delta Q_{\rm H} = \int_{t_0 }^{t_1 } {\mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} {\pmb u \cdot \delta \pmb f_{\rm N} {\rm d}V} }{\rm d}t + \int_{t_0 }^{t_1 } {\int\!\!\!\!\int\limits_{\kern-2.5pt S_\sigma } {\pmb u \cdot \delta \pmb T_{\rm N} {\rm d}S} }{\rm d}t % \end{array}$$
其先决条件为
$$\pmb u - \bar {\pmb u} =\pmb 0 \quad (\mbox{在} S_u \mbox{上})(2)$$
系统的动能为
$$ T_{\rm d} = \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V}{\frac{1}{2}\rho \dot {\pmb u} \cdot \dot {\pmb u}{\rm d}V}(3)$$
系统的势能为
$$U = \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V}{\left[ {A\left( {\frac{1}{2}\nabla \pmb u + \frac{1}{2} \pmb u\nabla + \frac{1}{2}\nabla \pmb u \cdot \pmb u \nabla } \right) -\pmb f \cdot \pmb u} \right]{\rm d}V} - \int\!\!\!\!\int\limits_{\kern-2.5pt S_\sigma } {\pmb T \cdot \pmb u {\rm d}S}(4)$$
系统的拟势能为
$$U_{\rm q} = - \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} {\pmb f_{\rm N} \cdot \pmb u {\rm d}V} - \int\!\!\!\!\int\limits_{\kern-2.5pt S_\sigma } {\pmb T_{\rm N} \cdot \pmb u {\rm d}S}(5)$$
非保守系统的余虚功为
$$\delta Q_{\rm H} = \int_{t_0 }^{t_1 } {\mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} {\pmb u \cdot \delta \pmb f_{\rm N} {\rm d}V} }{\rm d}t + \int_{t_0 }^{t_1 } {\int\!\!\!\!\int\limits_{\kern-2.5pt S_\sigma } {\pmb u \cdot \delta \pmb T_{\rm N} {\rm d}S} }{\rm d}t(6)$$
其中, $\pmb u$为位移矢量, $\pmb f$为保守体力矢量,$\pmb f_{\rm N} $非保守体力矢量, $\pmb T$为保守面力矢量, $\pmb T_{\rm N} $非保守面力矢量, $\rho$为密度, $\nabla $为Hamilton算子,$S_\sigma $为应力边界, $S_u$为位移边界, $V$为空间体积域.
将式(3) $\sim $式(6)代入式(1), 应用Lagrange-Hamilton体系,通过推导拟Hamilton原理的拟驻值条件,可得非保守非线性弹性动力学一类变量的Lagrange方程
$$\frac{\rm d}{{\rm d}t}\frac{\partial T_{\rm d}}{\partial \dot {\pmb u}} + \frac{\partial U}{\partial \pmb u} = \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} {\pmb f_{\rm N} {\rm d}V} + \int\!\!\!\!\int\limits_{\kern-2.5pt S_\sigma } {\pmb T_{\rm N} {\rm d}S}(7)$$
用类似的方法可以推导出非保守非线性弹性动力学两类变量的Lagrange方程,不再赘述.
根据变导的运算法则和Lagrange方程中求导的性质,推导可得Lagrange方程中的各项, 并代入式 (7),可得非保守非线性弹性动力学一类变量的控制方程
$$\left. {\begin{array}{l} \rho \ddot {\pmb u} - \nabla \cdot \left[ {\left( {\pmb I + \pmb u\nabla } \right) \cdot \frac{\partial A\left( {\frac{1}{2}\nabla \pmb u + \frac{1}{2} \pmb u\nabla + \frac{1}{2}\nabla \pmb u \cdot \pmb u\nabla } \right)}{\partial \left( {\frac{1}{2}\nabla \pmb u + \frac{1}{2} \pmb u\nabla + \frac{1}{2}\nabla \pmb u \cdot \pmb u\nabla } \right)}} \right] - \pmb f - \pmb f_{\rm N} =\pmb 0 \\ \left( {\pmb I + \pmb u\nabla } \right) \cdot \frac{\partial A\left({\frac{1}{2}\nabla \pmb u + \frac{1}{2} \pmb u\nabla + \frac{1}{2}\nabla \pmb u \cdot \pmb u\nabla } \right)}{\partial \left( {\frac{1}{2}\nabla \pmb u + \frac{1}{2} \pmb u\nabla + \frac{1}{2}\nabla \pmb u \cdot \pmb u\nabla } \right)} \cdot\pmb n -\pmb T - \pmb T_{\rm N} =\pmb 0 \\ \end{array}} \right\}(8)$$
先决条件为式 (2).
应用类似方法, 可得非保守非线性弹性动力学二类变量的控制方程,不再赘述.
以上问题的详细推导过程, 可以参阅文献 (周平和梁立孚2017).
对于H. H. E. Leipholz创立伴生力型的非保守系统, 寻找合适的算例是困难的.本文作者将非保守系统变分原理应用于气动弹性问题 (Liang et al. 2005),不仅可以解决气动弹性这个技术难题, 而且可以较好地说明伴生力的意义.
由于黏性的存在,使得不可压缩黏性流体动力学成为非保守系统的力学问题.鉴于不可压缩黏性流体动力学的Lagrange方程是不可压缩黏性流体动力学的Hamilton型拟变分原理的拟驻值条件,本节是由不可压缩黏性流体动力学的Hamilton型拟变分原理推导出不可压缩黏性流体动力学的Lagrange方程,然后,再由不可压缩黏性流体动力学的Lagrange方程推导出不可压缩黏性流体动力学的控制方程.
不可压缩黏性流体动力学的Hamilton型拟变分原理可以表示为
$$ \delta \varPi _1 + \delta Q = 0(9)$$
式中
$$%\begin{array}{l} \varPi _{1} = \int_{t_0 }^{t_1 } \left\{ \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} \left[\frac{1}{2}\rho\pmb v^{\rm q}\cdot\pmb v^{\rm q}+p\pmb I:\nabla \pmb u^{\rm q}-\mu\left(\nabla \pmb v^{\rm q}+\pmb v^{\rm q}\nabla \right):\nabla \pmb u^{\rm q}+\pmb f^{\rm q}\cdot\pmb u^{\rm q}\right]{\rm d}V+ \right.$$ $$\left. \int\!\!\!\!\int\limits_{\kern-2.5pt S_{\rm f}}\pmb T^{\rm q}\cdot\pmb u^{\rm q}{\rm d}S\right\}{\rm d}t$$ $$\delta Q = \int_{t_0 }^{t_1 } \Bigg[\mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} \nabla \pmb u^{\rm q}:\delta \mu\left(\nabla \pmb v^{\rm q}+\pmb v^{\rm q}\nabla \right){\rm d}V\Bigg]{\rm d}t % \end{array}$$
其先决条件
$$\begin{array}{l} \pmb v^{\rm q} - \frac{{\rm d} \pmb u^{\rm q}}{{\rm d}t} = \textbf{0} \\ \pmb u^{\rm q} - \bar{\pmb u}= \textbf{0} \quad (\mbox{在} S_{\rm w} \mbox{上}) \\ \end{array}(10)$$
其中, $\rho $是密度, 为零阶张量 (标量); $\pmb v^{\rm q}$为流体速度矢量 (一阶张量); $\pmb f^{\rm q}$为单位体积流体所受的体积力矢量; $\mu $为黏性系数标量; $\pmb I$为二阶单位张量; $p$为流体压强, 为零阶张量 (标量); $\pmb n^{\rm q}$为流体边界面单位外法向矢量; $\pmb T^{\rm q}$为流体所受的面积力矢量; $\pmb u^{\rm q}$为流体位移矢量. $\nabla $为梯度算子 (又称Hamilton算子). $S_{\rm w} $为固壁边界面, $S_{\rm f} $为自由表面.系统的动能为
$$ T_{\rm d}= \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} {\frac{1}{2}\rho \pmb v^{\rm q} \cdot \pmb v^{\rm q}{\rm d}V}(11)$$
系统的势能为
$$U = \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} {\left( { - p\pmb I:\nabla \pmb u^{\rm q} -\pmb f^{\rm q} \cdot \pmb u ^{\rm q}} \right){\rm d}V} - \mathop{\int\!\!\!\!\int}\limits_{\kern-2.5pt S_{\rm f} } {\pmb T^{\rm q} \cdot \pmb u ^{\rm q}{\rm d}S}(12)$$
将黏性阻力引起的流体剪切应力视为非保守广义力, 表示为
$$\pmb \tau _{\rm N}^{\rm q} = \mu \left( {\nabla \pmb v^{\rm q} + \pmb v^{\rm q}\nabla } \right)(13)$$
则系统的拟势能为
$$ U_{\rm N} = \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} {\mu \left( {\nabla \pmb v^{\rm q} + \pmb v^{\rm q}\nabla } \right):\nabla \pmb u^{\rm q}}{\rm d}V = \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} {\pmb \tau _{\rm N} :\nabla \pmb u^{\rm q}}{\rm d}V(14)$$
非保守系统的余虚功为
$$ \delta Q = \int_{t_0 }^{t_1 } {\Bigg[{\mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} {\nabla \pmb u^{\rm q}:\delta \mu }\left( {\nabla \pmb v^{\rm q} + \pmb v^{\rm q}\nabla } \right){\rm d}V} \Bigg]{\rm d}t} = \int_{t_0 }^{t_1 } {\Bigg[ {\mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} {\nabla \pmb u^{\rm q}}:\delta \pmb \tau _{\rm N} {\rm d}V} \Bigg]}{\rm d}t(15)$$
将式 (11) $\sim $式 (15)代入式 (9), 应用Lagrange-Hamilton体系,通过推导拟Hamilton原理的拟驻值条件, 并考虑到边界条件$\pmb u^{\rm q} - \bar{\pmb u}=\pmb 0$,可得不可压缩黏性流体动力学的Lagrange方程
$$ \frac{\rm d}{{\rm d}t}\frac{\partial T_{\rm d}}{\partial \pmb v^{\rm q}} + \frac{\partial U}{\partial\pmb u^{\rm q}} - \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} {\nabla \cdot\pmb \tau _{\rm N} {\rm d}V} + \mathop{\int\!\!\!\!\int}\limits_{\kern-2.5pt S_{\rm f} } {\pmb \tau _{\rm N} \cdot \pmb n{\rm d}S} = 0(16)$$
详细的推导过程参见 (梁立孚和周平 2018).
根据变导的运算法则和Lagrange方程中求导的性质,推导可得Lagrange方程中的各项, 并代入式 (16),可得不可压缩黏性流体动力学控制方程
$$ \left. {\begin{array}{l} \rho \dot {\pmb v}^{\rm q} + \nabla \cdot \left[ {p\pmb I - \mu \left( {\nabla \pmb v^{\rm q} + \pmb v^{\rm q}\nabla } \right)} \right] -\pmb f^{\rm q} = \textbf{0} \\ - p\pmb I \cdot \pmb n + \mu \left( {\nabla \pmb v^{\rm q} + \pmb v^{\rm q}\nabla } \right) \cdot \pmb n -\pmb T^{\rm q} = \textbf{0} \\ \end{array}} \right\}(17)$$
不可压缩黏性流体动力学控制方程 (17)与其先决条件 (10)构成封闭的微分方程组. 详细的推导过程参见梁立孚和周平 (2018)的文章.
这部分内容的应用范围较广, 在航空、航天、航海等领域都有重要的应用.
但要注意一个问题, 第1节中的非保守力为 Leipholz伴生力,第2节中的非保守力为黏性阻力,这两节的Hamilton型变分原理中的非保守力的表示形式不同. 其实,第2节非保守力也可以写为第1节的形式, 周平等(2009)的算例便说明了这个问题.
黏弹性体可以理解为是弹性体与液体的混合物.在黏弹性体发生应变的时候, 其中的弹性部分承担静态的应力,而液体部分不承担静态的应力. 当应变对时间的导数不为零的时候,液体部分由于存在微观摩擦, 出现黏度, 而承担动态的应力. 因此,一个静态的黏弹性体与一个纯弹性体相当.本节以一类变量问题为例来讨论问题.
我国学者对黏弹性力学的理论、方法和应用等方面进行了充分的研究(杨挺青1990, 罗恩 1990, 程昌钧和朱正佑2003), 例如,黏弹性问题的数学模型、黏弹性结构的变分原理与对应原理、求解黏弹性问题的计算方法、黏弹性结构的动力学行为与动力稳定性、黏弹性介质的散射和逆散射问题等.本文作者建立了非保守黏弹性动力学的拟Hamilton原理和Lagrange方程(周平和梁立孚 2017).
黏弹性动力学的本构方程由弹性和黏性两部分组成,弹性部分服从广义胡克定律, 黏性部分服从广义牛顿黏性定律.应用Kelvin模型, 黏弹性本构关系表示为
$$\pmb \sigma =\pmb a:\left( {\frac{1}{2}\nabla \pmb u + \frac{1}{2} \pmb u\nabla } \right) + \mu \left( {\nabla \dot {\pmb u} + \dot {\pmb u}\nabla } \right)\quad \mbox{(一类变量)}(18)$$
非保守黏弹性动力学一类变量的拟Hamilton原理为
$$ \delta \varPi _{\rm H1} - \delta Q_{\rm H} = 0(19)$$
式中
$$ \varPi _{\rm H1} = \int_{t_0 }^{t_1 } \Bigg\{ \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} \frac{1}{2}\rho \dot {\pmb u} \cdot \dot {\pmb u}{\rm d}V - \Bigg\{ \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} \bigg[ \frac{1}{2}\left(\frac{1}{2}\nabla \pmb u + \frac{1}{2} \pmb u\nabla \right):\pmb a:\left(\frac{1}{2}\nabla \pmb u + \frac{1}{2} \pmb u\nabla \right)+ $$
$$ \mu \left( \nabla \dot {\pmb u} + \dot {\pmb u}\nabla \right):\nabla \pmb u -\pmb f \cdot \pmb u - \pmb f_{\rm N} \cdot \pmb u \bigg]{\rm d}V- \mathop{\int\!\!\!\!\int}\limits_{\kern-2.5pt S_\sigma } \left( {\pmb T + \pmb T_{\rm N} } \right) \cdot \pmb u {\rm d}S \Bigg \} \Bigg\}{\rm d}t $$
$$\delta Q_{\rm H} = \int_{t_0 }^{t_1 }{\mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} {\left[ {\pmb u \cdot \delta \pmb f_{\rm N} - \nabla \pmb u:\delta \mu \left( {\nabla \dot {\pmb u} + \dot {\pmb u}\nabla } \right){\rm d}V} \right]}}{\rm d}t + \int_{t_0 }^{t_1 } {\mathop{\int\!\!\!\!\int}\limits_{\kern-2.5pt S_\sigma } {\pmb u \cdot \delta \pmb T_{\rm N} {\rm d}S}}{\rm d}t $$
其先决条件为式
$$\pmb u - \bar {\pmb u} =\pmb 0 \quad (\mbox{在} S_u\mbox{上})(20)$$
这就是非保守黏弹性动力学一类变量的拟Hamilton原理.
系统的动能为
$$ T_{\rm d} = \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} {\frac{1}{2}\rho \dot {\pmb u} \cdot \dot {\pmb u}{\rm d}V}(21)$$
系统的势能为
$$ U = \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} {\left[ {\frac{1}{2}\left( {\frac{1}{2}\nabla \pmb u + \frac{1}{2} \pmb u\nabla } \right):\pmb a:\left({\frac{1}{2}\nabla \pmb u + \frac{1}{2} \pmb u\nabla } \right) -\pmb f \cdot \pmb u } \right]{\rm d}V} - \mathop{\int\!\!\!\!\int}\limits_{\kern-2.5pt S_\sigma } {\pmb T \cdot \pmb u {\rm d}S}(22)$$
将黏性阻力引起的流体剪切应力视为非保守广义力, 表示为
$$ \pmb \tau _{\rm N} = \mu \left( {\nabla \dot {\pmb u} + \dot {\pmb u}\nabla } \right)(23)$$
则系统的拟势能为
$$ U_{\rm q} = \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} { \pmb \tau _{\rm N} :\nabla \pmb u}{\rm d}V - \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V}{\pmb f_{\rm N} \cdot \pmb u {\rm d}V} - \mathop{\int\!\!\!\!\int}\limits_{\kern-2.5pt S_\sigma } {\pmb T_{\rm N} \cdot \pmb u {\rm d}S}(24)$$
非保守系统的余虚功为
$$ \delta Q_{\rm H} = \int_{t_0 }^{t_1 } {\mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} {\pmb u \cdot \delta \pmb f_{\rm N} {\rm d}V}}{\rm d}t + \int_{t_0 }^{t_1 } {\mathop{\int\!\!\!\!\int}\limits_{\kern-2.5pt S_\sigma } {\pmb u \cdot \delta \pmb T_{\rm N} {\rm d}S}}{\rm d}t - \int_{t_0 }^{t_1 } {\Bigg[ {\mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} {\nabla \pmb u^{\rm q}:\delta } \pmb \tau _{\rm N} {\rm d}V} \Bigg]}{\rm d}t(25)$$
将式(21) $\sim $式 (25)代入式 (19), 应用Lagrange-Hamilton体系,通过推导拟Hamilton原理的拟驻值条件,可得非保守黏弹性动力学一类变量的Lagrange方程
$$\frac{\rm d}{{\rm d}t}\frac{\partial T_{\rm d}}{\partial \dot {\pmb u}} + \frac{\partial U}{\partial \pmb u} - \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} {\nabla \cdot\pmb \tau _{\rm N} {\rm d}V} + \mathop{\int\!\!\!\!\int}\limits_{\kern-2.5pt S_\sigma } { \pmb \tau _{\rm N} \cdot \pmb n{\rm d}S} = \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} {\pmb f_{\rm N} {\rm d}V} + \mathop{\int\!\!\!\!\int}\limits_{\kern-2.5pt S_\sigma } {\pmb T_{\rm N} {\rm d}S}(26)$$
根据变导的运算法则和Lagrange方程中求导的性质,推导可得Lagrange方程中的各项, 并代入式 (26),可得非保守黏弹性动力学控制方程
$$ \left. {\begin{array}{l} \rho \ddot {\pmb u} - \nabla \cdot \left[ {\frac{1}{2}(\nabla \pmb u + \pmb u\nabla ):\pmb a + \mu \left( {\nabla \dot {\pmb u} + \dot {\pmb u}\nabla } \right)} \right] -\pmb f - \pmb f_{\rm N} =\pmb 0 \\ \left[ {\left( {\frac{1}{2}\nabla \pmb u + \frac{1}{2} \pmb u\nabla } \right):\pmb a + \mu \left( {\nabla \dot {\pmb u} + \dot {\pmb u}\nabla } \right)} \right] \cdot \pmb n -\pmb T - \pmb T_{\rm N} =\pmb 0 \\ \end{array}} \right\}(27)$$
先决条件为式 (20).
详细的推导过程参见 周平和梁立孚 (2017)的文章.
这部分内容的应用范围很广,例如可以分析柱、梁、薄板等结构的稳定性和混沌运动,揭示出系统的一些动力学性质. 固体火箭发动机的火药柱,是典型的黏弹性材料, 在固体火箭发动机的火药柱的 (静)动力强度计算中,黏弹性动力学的Lagrange方程和Hamilton原理是大有用武之地的.还可以建立刚--黏弹性耦合动力学的Hamilton原理和Lagrange方程,应用于航空、航天、航海和机器人动力学.
航天科学技术向着更高更快的方向发展,高超声速飞行器逐步成为研究的热点. 这类飞行器的飞行马赫数高,气动加热效应大, 在飞行过程中承受着严酷的气动力和气动热载荷.高温环境会降低结构的材料性能, 使结构产生热应力、热变形、热屈曲等,改变结构的动力学特性. 因此,需要开展一系列高温环境下飞行器结构动力学理论分析与试验研究.我国是一个航天大国, 我国学者在热弹性动力学方面做出了重要贡献(杨炳渊等2008, 范绪箕2009, 闵桂荣和郭舜1998, 刘锦阳和洪嘉振 2006).本文作者建立了线性和非线性刚--热弹耦合动力学的Hamilton原理,并且应用于研究结构的热弹耦合稳定性问题 (冯晓九等2016)和所谓热力刚化问题 (Song et al. 2015).
众所周知, 结构的热效应主要体现在两个方面,一是引起结构材料的性能降低, 一是引起热应力.本文在同时考虑这两种热效应的情况下来讨论问题.
非保守热弹性动力学一类变量的拟Hamilton原理为
$$ \delta \varPi _{\rm H1} - \delta Q_{\rm H} = 0(28)$$
式中
$$ \varPi _{\rm H1} = \int_{t_0 }^{t_1 } \Bigg\{ \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} \frac{1}{2}\rho \dot {\pmb u} \cdot \dot {\pmb u}{\rm d}V - \Bigg[ \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} \bigg( \frac{1}{2}\left( \frac{1}{2}\nabla \pmb u + \frac{1}{2} \pmb u\nabla \right):\left(\pmb a+\frac{\partial\pmb a}{\partial T_{\rm d}}\Delta T_{\rm d}\right):$$ $$\left(\frac{1}{2}\nabla \pmb u + \frac{1}{2} \pmb u\nabla \right)- \pmb I\alpha\Delta T_{\rm d}: \left(\pmb a+\frac{\partial\pmb a}{\partial T_{\rm d}}\Delta T_{\rm d}\right):\left(\frac{1}{2}\nabla \pmb u + \frac{1}{2} \pmb u\nabla \right)-\pmb f \cdot \pmb u - \pmb f_{\rm N} \cdot \pmb u \bigg){\rm d}V- $$
$$\mathop{\int\!\!\!\!\int}\limits_{\kern-2.5pt S_\sigma } \left( {\pmb T + \pmb T_{\rm N} } \right)\cdot \pmb u {\rm d}S \Bigg ] \Bigg\}{\rm d}t$$
$$\delta Q_{\rm H} = \int_{t_0 }^{t_1 }{\mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V}{\pmb u \cdot \delta \pmb f_{\rm N} {\rm d}V}}{\rm d}t + \int_{t_0 }^{t_1 } {\mathop{\int\!\!\!\!\int}\limits_{\kern-2.5pt S_\sigma } {\pmb u \cdot \delta \pmb T_{\rm N} {\rm d}S}}{\rm d}t$$
其先决条件为
$$ \pmb u - \bar {\pmb u} = \pmb 0 \quad (\mbox{在}S_u\mbox{上})(29)$$
系统的动能为
$$ T_{\rm d} = \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} {\frac{1}{2}\rho \dot {\pmb u} \cdot \dot {\pmb u}{\rm d}V}(30)$$ 系统的势能为 $$U = \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} \bigg[ \frac{1}{2}\bigg(\frac{1}{2}\nabla \pmb u + \frac{1}{2} \pmb u\nabla \bigg):\bigg( \pmb a + \frac{\partial \pmb a}{\partial T_{\rm d}}\Delta T_{\rm d}\bigg):\bigg(\frac{1}{2}\nabla \pmb u + \frac{1}{2} \pmb u\nabla\bigg) - $$ $$ \pmb I\alpha \Delta T_{\rm d}:\bigg( \pmb a + \frac{\partial \pmb a}{\partial T_{\rm d}}\Delta T_{\rm d}\bigg):\bigg(\frac{1}{2}\nabla \pmb u + \frac{1}{2} \pmb u\nabla \bigg) -\pmb f \cdot \pmb u \bigg]{\rm d}V - \mathop{\int\!\!\!\!\int}\limits_{\kern-2.5pt S_\sigma } {\pmb T \cdot \pmb u {\rm d}S}(31)$$
系统的拟势能为
$$U_{\rm q} = - \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} {\pmb f_{\rm N} \cdot \pmb u {\rm d}V} - \mathop{\int\!\!\!\!\int}\limits_{\kern-2.5pt S_\sigma } {\pmb T_{\rm N} \cdot \pmb u {\rm d}S}(32)$$
非保守系统的余虚功为
$$ \delta Q_{\rm H} = \int_{t_0 }^{t_1 } {\mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} {\pmb u \cdot \delta \pmb f_{\rm N} {\rm d}V}}{\rm d}t + \int_{t_0 }^{t_1 } {\mathop{\int\!\!\!\!\int}\limits_{\kern-2.5pt S_\sigma } {\pmb u \cdot \delta \pmb T_{\rm N} {\rm d}S}}{\rm d}t(33)$$
将式(30) $\sim $式 (33)代入式 (28), 应用Lagrange-Hamilton体系,通过推导拟Hamilton原理的拟驻值条件,可得非保守热弹性动力学一类变量的Lagrange方程
$$ \frac{\rm d}{{\rm d}t}\frac{\partial T_{\rm d}}{\partial \dot {\pmb u}} + \frac{\partial U}{\partial \pmb u} = \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} {\pmb f_{\rm N} {\rm d}V} + \mathop{\int\!\!\!\!\int}\limits_{\kern-2.5pt S_\sigma } {\pmb T_{\rm N} {\rm d}S}(34)$$
用类似的方法可以推导出非保守系统热弹性动力学两类变量的Lagrange方程,不再赘述.
根据变导的运算法则和Lagrange方程中求导的性质,推导可得Lagrange方程中的各项, 并代入式 (34),可得非保守系统热弹性动力学一类变量的控制方程
$$ \left.\begin{array}{l} \rho \ddot {\pmb u} - \nabla \cdot \left[ \left( {\frac{1}{2}\nabla \pmb u + \frac{1}{2} \pmb u\nabla } \right): \left( {\pmb a + \frac{\partial \pmb a}{\partial T_{\rm d}}\Delta T_{\rm d}} \right) -\right. \\\qquad \left.\pmb I\alpha \Delta T_{\rm d}:\left( {\pmb a + \frac{\partial \pmb a}{\partial T_{\rm d}}\Delta T_{\rm d}} \right) \right] -\pmb f - \pmb f_{\rm N} =\pmb 0 \\ \left[ \left( {\frac{1}{2}\nabla \pmb u + \frac{1}{2} \pmb u\nabla } \right): \left( {\pmb a + \frac{\partial \pmb a}{\partial T_{\rm d}}\Delta T_{\rm d}} \right) -\right. \\\qquad \left.\pmb I\alpha \Delta T_{\rm d}:\left( {\pmb a + \frac{\partial \pmb a}{\partial T_{\rm d}}\Delta T_{\rm d}} \right) \right] \cdot \pmb n -\pmb T - \pmb T_{\rm N} =\pmb 0 \\ \end{array}\right\}(35)$$
先决条件为式 (29).
应用类似方法, 可得非保守热弹性动力学两类变量的控制方程.
为适应航天工程的迅猛发展的需要, 出现了多柔体动力学的新兴学科.由于多柔体构形的复杂性, 直到2000年,解决多柔体动力学问题主要是依赖于数值的、定量的分析方法,几乎没有进行解析的分析讨论,这对于深刻把握系统的非线性力学实质、预测系统的全局动力学现象是十分不利的.因此, 极有必要开展多柔体系统的理论分析, 当然,这是一个十分复杂的问题, 解决它可能需要很长的时间 (马兴瑞等2001).
国内外学者在研究多柔体动力学的过程中,多数是将多柔体动力学处理为刚--弹耦合动力学. 围绕这个重要课题,本文作者开展了一些研究工作 (Liang et al. 2009, 梁立孚 2011b, Liang & Song 2013). 研究表明, 由于航天动力学是耦合动力学,应用分析动力学来研究是一个有效的途径.我们利用分析力学是用对能量与功的分析代替对力(及其相应的位移)与力矩 (及其相应的角位移)的分析的特点,根据问题的物理背景, 应用功能转换原理和能量守恒定律,正确建立耦合运动的动能和势能 (如果是非保守系统,还要建立非保守力的余虚功),进而应用Hamilton型变分原理来研究耦合动力学. 在此基础上,应用Lagrange方程开展研究工作, 在梁立孚等(2016)的专著中,进行了较为系统的研究工作, 其部分内容体现在冯晓九等(2016)的研究中.以下扼要介绍这方面的工作.
如果认为作用在变形体上的外力既有保守力又有非保守力,则导致刚体运动的力(即作用于质心的主矢和主矩)同样既有保守力又有非保守力;应用功能转换原理和能量守恒定律,可以将非保守非线性刚--弹耦合动力学的拟Hamilton原理表示为
$$ \delta \pi _{\rm H1} - \delta Q_{\rm H} = 0(36)$$
式中
$$\pi _{\rm H1} =\int_{t_0 }^{t_1 } \Bigg[ \mathop{\int}\limits_{m}\left(\frac12\frac{{\rm d}\pmb X^{\rm c}}{{\rm d}t}\cdot\frac{{\rm d}\pmb X^{\rm c}}{{\rm d}t}+\frac{{\rm d}\pmb X}{{\rm d}t}\cdot\frac{{\rm d}\pmb u}{{\rm d}t}+\frac12\frac{{\rm d}\pmb u}{{\rm d}t}\cdot\frac{{\rm d}\pmb u}{{\rm d}t}\right){\rm d}m+$$
$$ \frac{1}{2}\frac{{\rm d}\pmb\theta }{{\rm d}t} \cdot \pmb H^{\rm c} - \pi _1 + \left( \pmb F + \pmb F_{\rm N} \right) \cdot \pmb X^{\rm c} + \left( \pmb M + \pmb M_{\rm N} \right) \cdot \pmb \theta \Bigg]{\rm d}t$$
$$\pi _1 = \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} \left[ A\left( \frac{1}{2}\nabla \pmb u + \frac{1}{2} \pmb u\nabla + \frac{1}{2}\nabla \pmb u \cdot \pmb u\nabla \right) - \left(\pmb f + \pmb f_{\rm N} \right) \cdot \pmb u \right] {\rm d}V - \int\!\!\!\!\int\limits_{\kern-2.5pt S_\sigma } \left( \pmb T + \pmb T_{\rm N} \right) \cdot \pmb u {\rm d}S$$
$$\delta Q_{\rm H} = \int_{t_0 }^{t_1 } \Bigg[ \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} \pmb u \cdot \delta \pmb f_{\rm N} {\rm d}V + \int\!\!\!\!\int\limits_{\kern-2.5pt S_\sigma } \pmb u \cdot \delta \pmb T_{\rm N} {\rm d}S + \left(\pmb X^{\rm c} \cdot \delta \pmb F_{\rm N} + \pmb \theta \cdot \delta \pmb M_{\rm N} \right) \Bigg] {\rm d}t$$
其先决条件为
$$\pmb u - \bar{\pmb u}=\pmb 0\quad (\mbox{在}S_u\mbox{上})(37)$$
其中, $\pmb u$为位移, $\bar{\pmb u}$为边界位移, $V$为体积,$S_\sigma $为应力边界面, $S_u$为位移边界面, $A$为应变能函数,$t$为时间, $\rho$为质量密度, $ m$为质量; $\nabla$为Hamilton算子;$\pmb f$为保守体力, $\pmb f_{\rm N}$为非保守体力, $\pmb T$为保守面积力, $\pmb T_{\rm N}$为非保守面积力, $\pmb H^{\rm c}$为对质心的动量矩, 注意, 在这一节中$\pmb H^{\rm c} =\pmb J \cdot \frac{{\rm d}\pmb\theta }{{\rm d}t}$, 有时记为$\pmb H^{\rm c}(\pmb\theta )$, $\pmb J$为对质心的转动惯量.作用于质心的主矢$\left( \pmb F +\pmb F_{\rm N} \right)$和主矩$\left(\pmb M + \pmb M_{\rm N} \right)$既有保守力又有非保守力.
刚--弹耦合动力学中的动能可以写为
$$T_{\rm d} = \mathop{\int}\limits_{m}\left(\frac12\frac{{\rm d}\pmb X^{\rm c}}{{\rm d}t}\cdot\frac{{\rm d}\pmb X^{\rm c}}{{\rm d}t}+\frac{{\rm d}\pmb X}{{\rm d}t}\cdot\frac{{\rm d}\pmb u}{{\rm d}t}+\frac12\frac{{\rm d}\pmb u}{{\rm d}t}\cdot\frac{{\rm d}\pmb u}{{\rm d}t}\right){\rm d}m+\frac12\frac{{\rm d}\pmb \theta}{{\rm d}t}\cdot\pmb H^{\rm c}= $$
$$\mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} \bigg[ \frac{1}{2}\rho \frac{{\rm d}\pmb X^{\rm c}}{{\rm d}t} \cdot \frac{{\rm d}\pmb X^{\rm c}}{{\rm d}t} + \rho \left(\frac{{\rm d}\pmb X^{\rm c}}{{\rm d}t} + \frac{{\rm d}\pmb \theta }{{\rm d}t}\times \pmb x \right) \cdot \frac{{\rm d}\pmb u}{{\rm d}t} + \frac{1}{2}\rho \frac{{\rm d}\pmb u}{{\rm d}t} \cdot \frac{{\rm d}\pmb u}{{\rm d}t}\bigg]{\rm d}V + \frac{1}{2}\frac{{\rm d}\pmb \theta }{{\rm d}t} \cdot\pmb H^{\rm c}(38)$$
刚--弹耦合动力学中的势能可以写为
$$U = \pi _1 -\pmb F \cdot \pmb X^{\rm c} - \pmb M \cdot \pmb \theta =\mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} \bigg[ A\left(\frac{1}{2}\nabla \pmb u + \frac{1}{2} \pmb u\nabla + \frac{1}{2}\nabla \pmb u \cdot \pmb u\nabla \right) -\pmb f \cdot \pmb u \bigg]{\rm d}V$$
$$- \int\!\!\!\!\int\limits_{\kern-2.5pt S_\sigma } {\pmb T \cdot \pmb u }{\rm d}S -\pmb F \cdot \pmb X^{\rm c} -\pmb M \cdot \pmb \theta(39)$$
非保守系统非线性刚--弹耦合动力学的拟势能和余虚功可以表示为
$$ U_{\rm q} = - \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} {\pmb u \cdot \pmb f_{\rm N} {\rm d}V} - \int\!\!\!\!\int\limits_{\kern-2.5pt S_\sigma } {\pmb u \cdot \pmb T_{\rm N} {\rm d}S}(40)$$
$$ \delta Q_{\rm H} = \int_{t_0 }^{t_1 } {\mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} {\pmb u \cdot \delta \pmb f_{\rm N} {\rm d}V} }{\rm d}t + \int_{t_0 }^{t_1 } {\int\!\!\!\!\int\limits_{\kern-2.5pt S_\sigma } {\pmb u \cdot \delta \pmb T_{\rm N} {\rm d}S} }{\rm d}t(41)$$
将式 (38) $\sim $式 (41)代入式 (36), 应用Lagrange-Hamilton体系,通过推导拟Hamilton原理的拟驻值条件,可得非线性非保守系统刚--弹耦合动力学的Lagrange方程为
$$ \left. {\begin{array}{l} \frac{\rm d}{{\rm d}t}\frac{\partial T_{\rm d}}{\partial \dot {\pmb X}^{\rm c}} + \frac{\partial U}{\partial \pmb X^{\rm c}} - \pmb F_{\rm N} =\pmb 0 \\ \frac{\rm d}{{\rm d}t}\frac{\partial T_{\rm d}}{\partial \dot {\pmb \theta }} + \frac{\partial U}{\partial \theta } -\pmb M_{\rm N} =\pmb 0 \\ \frac{\rm d}{{\rm d}t}\frac{\partial T_{\rm d}}{\partial \dot {\pmb u}} + \frac{\partial U}{\partial \pmb u} - \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} {\pmb f_{\rm N} {\rm d}V} - \int\!\!\!\!\int\limits_{\kern-2.5pt S_\sigma } {\pmb T_{\rm N} {\rm d}S} =\pmb 0 \\ \end{array}} \right\}(42)$$
具体的推导过程参见 梁立孚等 (2015)以及冯晓九等(2016)的文章.
根据变导的运算法则和Lagrange方程中求导的性质,推导可得Lagrange方程中的各项, 并代入式 (42),可得一类变量的非线性非保守刚--弹耦合动力学的控制方程
$$ \left. {\begin{array}{l} \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} {\rho \left( {\frac{{\rm d}^2\pmb u}{{\rm d}t^2} + \frac{{\rm d}^2\pmb X^{\rm c}}{{\rm d}t^2}} \right)}{\rm d}V -\pmb F -\pmb F_{\rm N} =\pmb 0 \\ -\mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} {\rho \frac{\rm d}{{\rm d}t} \left( \frac{{\rm d}\pmb u}{{\rm d}t} \times \pmb x \right)}{\rm d}V+\frac{{\rm d}\pmb H^{\rm c}}{{\rm d}t} -\pmb M -\pmb M_{\rm N} =\pmb 0 \\ \rho\left[ \frac{{\rm d}^2\pmb u}{{\rm d}t^2} + \frac{{\rm d}^2\pmb X^{\rm c}}{{\rm d}t^2}+\frac{{\rm d}^2\pmb \theta}{{\rm d}t^2}\times\pmb x +\frac{{\rm d}\pmb \theta}{{\rm d}t}\times\left(\frac{{\rm d}\pmb \theta}{{\rm d}t}\times\pmb x\right) \right]- \\\qquad (\pmb I+\pmb u\nabla)\cdot\frac{\partial A\left(\frac12\nabla\pmb u+\frac12\pmb u\nabla+\frac12\nabla\pmb u\cdot\pmb u\nabla\right)}{\partial \left(\frac12\nabla\pmb u+\frac12\pmb u\nabla+\frac12\nabla\pmb u\cdot\pmb u\nabla\right)}\cdot\nabla-\pmb f-\pmb f_{\rm N}=\pmb 0\quad (\mbox{在}V\mbox{中}) \\ (\pmb I+\pmb u\nabla)\cdot\frac{\partial A\left(\frac12\nabla\pmb u+\frac12\pmb u\nabla+\frac12\nabla\pmb u\cdot\pmb u\nabla\right)}{\partial \left(\frac12\nabla\pmb u+\frac12\pmb u\nabla+\frac12\nabla\pmb u\cdot\pmb u\nabla\right)}\cdot\pmb n-\pmb T-\pmb T_{\rm N}=\pmb 0\quad (\mbox{在}S_\sigma\mbox{中})\\ \end{array}} \right\}(43)$$
先决条件为式 (37).
详细的推导过程参见 梁立孚等 (2015)以及 冯晓九等 (2016)的文章.应用类似方法可以处理两类变量非保守系统非线性刚--弹耦合动力学的Lagrange方程的问题,不再赘述.
本文作者应用刚--弹耦合动力学Hamilton原理和Lagrange方程研究自由梁的振动问题和动力刚化问题,均取得较好的效果.
随着航天事业的发展,特别是大型空间站的建立、空间实验室的出现以及探讨人类长期在宇宙空间居住或者旅行的研究工作的开展,较全面地研究流体和固体的耦合问题已经提上了日程. 对于这一研究领域,在航天器充液贮箱液固耦合机理研究和大规模液固耦合模型建模计算的应用研究方面,国内尚比较欠缺 (王照林和刘延柱 2002, 李青等 2012).
这里的刚--液耦合系统模型的简化, 在梁立孚等(2016)的文章中做了较为详细的说明. 梁立孚等(2013)建立了刚--液耦合动力学的拟Hamilton原理. 在此基础上,本文应用Lagrange-Hamilton体系,建立了刚--液耦合动力学的Lagrange方程, 进而推导出其控制方程.
如果认为作用在液体上的外力既有保守力又有非保守力,则导致刚体运动的力,即作用于质心的主矢和主矩同样既有保守力又有非保守力.应用功能转换原理和能量守恒定律,一类变量刚--液耦合动力学的拟变分原理表示为
$$ \delta \pi _{rq1} - \delta Q_{rq1} = 0(44)$$
式中
$$ \pi _{{\rm rq}1} = \int_{t_0 }^{t_1 } \Bigg[ \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} \frac{1}{2}\rho \frac{{\rm d}\pmb X^{\rm c}}{{\rm d}t} \cdot \frac{{\rm d}\pmb X^{\rm c}}{{\rm d}t}{\rm d}V + \frac{1}{2}\frac{{\rm d}\pmb \theta }{{\rm d}t} \cdot\pmb J \cdot \frac{{\rm d}\pmb \theta }{{\rm d}t} + $$ $$ \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt {V^{\rm q}}} \rho \left(\frac{{\rm d}\pmb X^{\rm c}}{{\rm d}t} + \frac{{\rm d}\pmb \theta }{{\rm d}t}\times\pmb x^{\rm q} \right) \cdot \frac{{\rm d}\pmb u^{\rm q}}{{\rm d}t}{\rm d}V + \pi _{{\rm q}1} + \left( \pmb F +\pmb F_{\rm N} \right) \cdot \pmb X^{\rm c} + \left( {\pmb M + \pmb M_{\rm N} } \right) \cdot \pmb \theta \Bigg]{\rm d}t $$
$$ \pi _{{\rm q}1} =\mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} \bigg[\frac{1}{2}\rho \frac{{\rm d}\pmb u^{\rm q}}{{\rm d}t} \cdot \frac{{\rm d}\pmb u^{\rm q}}{{\rm d}t} +p\pmb I:\nabla\pmb u^{\rm q}-\mu\left(\nabla \frac{{\rm d}\pmb u^{\rm q} }{{\rm d}t}+\frac{{\rm d}\pmb u^{\rm q} }{{\rm d}t}\nabla \right):\nabla\pmb u^{\rm q}+ $$
$$ \left(\pmb f^{\rm q}+\pmb f^{\rm q}_{\rm N}\right)\cdot \pmb u^{\rm q}\bigg]{\rm d}V+\int\!\!\!\!\int\limits_{\kern-2.5pt S_\sigma }\left(\pmb T^{\rm q}+\pmb T^{\rm q}_{\rm N}\right)\cdot \pmb u^{\rm q}{\rm d}S $$
$$ \delta Q_{{\rm rq}1} = \int_{t_0 }^{t_1 } \left(\pmb X^{\rm c} \cdot \delta \pmb F_{\rm N} + \pmb \theta \cdot \delta\pmb M_{\rm N} \right){\rm d}t -$$
$$ \int_{t_0 }^{t_1 } \Bigg\{ \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt {V^{\rm q}}} \bigg[ \nabla \pmb u^{\rm q}:\delta \mu \left( \nabla \frac{{\rm d}\pmb u^{\rm q}}{{\rm d}t} + \frac{{\rm d}\pmb u^{\rm q}}{{\rm d}t}\nabla \right) - \pmb u^{\rm q} \cdot \delta \pmb f_{\rm N}^{\rm q} \bigg] {\rm d}V - \int\!\!\!\!\int\limits_{S_\sigma } \pmb u^{\rm q} \cdot \delta\pmb T _{\rm N}^{\rm q} {\rm d}S \Bigg\} {\rm d}t $$
先决条件为
$$ \pmb u^{\rm q} =\pmb 0 \quad (\mbox{在}S_{\rm w}\mbox{上})(45)$$
刚--液耦合动力学中的动能可以写为
$$ T_{\rm d} =\mathop{\int}\limits_{m} \bigg(\frac{1}{2} \frac{{\rm d}\pmb X^{\rm c}}{{\rm d}t} \cdot \frac{{\rm d}\pmb X^{\rm c}}{{\rm d}t} +\frac{{\rm d}\pmb X }{{\rm d}t}\cdot\frac{{\rm d}\pmb u^{\rm q} }{{\rm d}t}+\frac{1}{2}\frac{{\rm d}\pmb u^{\rm q} }{{\rm d}t}\cdot\frac{{\rm d}\pmb u^{\rm q} }{{\rm d}t}\bigg){\rm d}m+\frac{1}{2} \frac{{\rm d}\pmb \theta}{{\rm d}t}\cdot\pmb H^{\rm c}= $$
$$ \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} \bigg[\frac{1}{2}\rho \frac{{\rm d}\pmb X^{\rm c}}{{\rm d}t} \cdot \frac{{\rm d}\pmb X^{\rm c}}{{\rm d}t} +\rho \left( \frac{{\rm d}\pmb X^{\rm c} }{{\rm d}t}+\frac{{\rm d}\pmb \theta }{{\rm d}t}\times\pmb x^{\rm q} \right)\cdot\frac{{\rm d}\pmb u^{\rm q} }{{\rm d}t} +\frac12\rho \frac{{\rm d}\pmb u^{\rm q} }{{\rm d}t}\cdot\frac{{\rm d}\pmb u^{\rm q} }{{\rm d}t}\bigg]{\rm d}V+\frac12 \frac{{\rm d}\pmb \theta}{{\rm d}t}\cdot\pmb H^{\rm c}(46) $$
刚--液耦合动力学中的势能可以写为
$$ U = \pi _{\rm q} -\pmb F \cdot \pmb X^{\rm c} -\pmb M \cdot \pmb \theta = \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt {V^{\rm q}}} \left[ p\pmb I:\nabla \pmb u^{\rm q} - \mu \left(\nabla \pmb v^{\rm q} + \pmb v^{\rm q}\nabla \right):\nabla \pmb u^{\rm q}+\pmb f^{\rm q} \cdot \pmb u ^{\rm q} \right]{\rm d}V +$$ $$\int\!\!\!\!\int\limits_{\kern-2.5pt S_\sigma } {\pmb T^{\rm q} \cdot \pmb u ^{\rm q}{\rm d}S} -\pmb F \cdot \pmb X^{\rm c} -\pmb M \cdot \pmb \theta(47)$$
刚--液耦合动力学的拟势能和余虚功可以表示为
$$ U_{\rm q} = - \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} {\pmb u^{\rm q} \cdot \pmb f_{\rm N}^{\rm q} {\rm d}V} - \int\!\!\!\!\int\limits_{\kern-2.5pt S_\sigma } {\pmb u^{\rm q} \cdot \pmb T_{\rm N}^{\rm q} {\rm d}S}(48)$$
$$ \delta Q_{\rm rq} = \int_{t_0 }^{t_1 } \left(\pmb X^{\rm c} \cdot \delta \pmb F_{\rm N} + \pmb \theta \cdot \delta \pmb M_{\rm N} \right){\rm d}t- $$
$$ \int_{t_0 }^{t_1 } \Bigg\{ \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt {V^{\rm q}}} \left[ \nabla \pmb u^{\rm q}:\delta \mu \left( \nabla \dot {\pmb u}^{\rm q} + \dot {\pmb u}^{\rm q}\nabla \right) - \pmb u^{\rm q} \cdot \delta \pmb f_{\rm N}^{\rm q} \right]{\rm d}V - \int\!\!\!\!\int\limits_{S_\sigma } \pmb u^{\rm q} \cdot \delta \pmb T_{\rm N}^{\rm q} {\rm d}S \Bigg\}{\rm d}t(49) $$
将式(46)\,$\sim $\,式(49)代入式(44), 应用Lagrange-Hamilton体系,通过推导拟Hamilton原理的拟驻值条件,可得刚--液耦合动力学一类变量的Lagrange方程为
$$ \left.\begin{array}{l} \frac{\rm d}{{\rm d}t}\frac{\partial T_{\rm d}}{\partial \dot {\pmb X}^{\rm c}} + \frac{\partial U}{\partial \pmb X^{\rm c}} - \pmb F_{\rm N} =\pmb 0 \\ \frac{\rm d}{{\rm d}t}\frac{\partial T_{\rm d}}{\partial \dot {\pmb \theta }} + \frac{\partial U}{\partial \pmb \theta } - \pmb M_{\rm N} =\pmb 0 \\ \frac{\rm d}{{\rm d}t}\frac{\partial T_{\rm d}}{\partial \dot {\pmb u}^{\rm q}} + \frac{\partial U}{\partial\pmb u^{\rm q}} - \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} {\pmb f_{\rm N}^{\rm q} {\rm d}V} - \int\!\!\!\!\int\limits_{\kern-2.5pt S_\sigma } {\pmb T_{\rm N}^{\rm q} {\rm d}S} =\pmb 0 \\ \end{array}\right\}(50)$$
根据变导的运算法则和Lagrange方程中求导的性质,推导可得Lagrange方程中的各项, 并代入式 (50),可得一类变量的非保守刚--液耦合动力学的控制方程
$$ \left. \begin{array}{l} \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} \rho \left(\frac{{\rm d}^2\pmb u^{\rm q}}{{\rm d}t^2} + \frac{{\rm d}^2\pmb X^{\rm c}}{{\rm d}t^2} \right){\rm d}V -\pmb F -\pmb F_{\rm N} =\pmb 0 \\ -\mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt V} \rho \frac{{\rm d}}{{\rm d}t} \left( \frac{{\rm d}\pmb u^{\rm q}}{{\rm d}t} \times \pmb x^{\rm q}\right){\rm d}V+ \frac{{\rm d} \pmb H^{\rm c}}{{\rm d}t} \pmb M -\pmb M_{\rm N} =\pmb 0 \\ \rho\left[ \frac{{\rm d}^2\pmb u^{\rm q}}{{\rm d}t^2} + \frac{{\rm d}^2\pmb X^{\rm c}}{{\rm d}t^2}+\frac{{\rm d}^2\pmb \theta}{{\rm d}t^2}\times\pmb x^{\rm q} +\frac{{\rm d}\pmb \theta}{{\rm d}t}\times\left(\frac{{\rm d}\pmb \theta}{{\rm d}t}\times\pmb x^{\rm q}\right) \right]- \\\qquad \left[-\nabla\cdot p\pmb I +\nabla\cdot\mu\left(\nabla \dot{\pmb u}^{\rm q}+\dot{\pmb u}^{\rm q}\nabla\right)+\pmb f^{\rm q}+\pmb f^{\rm q}_{\rm N}\right]=\pmb 0\quad (\mbox{在}V\mbox{中}) \\ p\pmb I\cdot\pmb n^{\rm q}-\mu(\nabla \dot{\pmb u}^{\rm q}+ \dot{\pmb u}^{\rm q}\nabla)\cdot\pmb n^{\rm q}+\pmb T^{\rm q}+\pmb T^{\rm q}_{\rm N}=\pmb 0\quad (\mbox{在}S_\sigma\mbox{中})\\ \end{array} \right\}(51)$$
先决条件为式 (45).
应用类似方法, 可得两类变量非保守刚--液耦合动力学的Lagrange方程.在与流体动力学有关的问题中, 有时这一组方程应用起来比较方便.
刚--液耦合动力学功能型拟Hamilton原理和Lagrange方程的建立,为刚--弹--液耦合动力学功能型拟Hamilton原理和Lagrange方程的建立打下基础.这类研究在航天器充液贮箱液固耦合机理研究和大规模液固耦合模型建模计算方面有重要应用.
在有关文献中 (戴世强等 2001, Pian & Tong 1972,董平和罗赛托斯1979, Orlov et al. 2006), 经常可以看到这样的论述:``变分原理作为有限元素法和其他近似计算方法的理论基础,随着电子计算机的广泛应用, 越来越得到学术界的重视. ''并且,有限元素法来源于变分直接方法------Ritz法.人们在研究Ritz变分直接方法时发现,在问题的整个选值域上选择坐标函数, 由于区域大,选择一个合适的坐标函数有时相当困难, 于是人们产生一个想法:是否可以将选择域划小,从而使选择坐标函数变得容易些呢?这便是有限元素法思想的萌芽. 从此,有限元素法便应运而生了.
本节将说明, 以上应用变分原理能够做到的事情,应用Lagrange方程也可以做到. 以下, 应用Lagrange方程建立有限元模型.
将弹性连续体划分为$N$个单元, 取$u_i $为自变函数,它们满足如下要求(见图1).
(1)在元素中, $u_i $满足$C^0$级连续;
(2)在无际边界$S_{ab} $上
$$ u_i^{(a)} = u_i^{(b)}(52)$$
(3)在边界$S_u $上
$$u_i^{(a)} = \bar {u}_i^{(a)}(53)$$
则Lagrange方程表示为
$$ \frac{\rm d}{{\rm d}t}\frac{\partial T_{\rm d}}{\partial \dot {u}_i^{(a)} } + \frac{\partial U}{\partial \dot {u}_i^{(a)} } = 0(54)$$
其中
$$T_{d} = \sum \limits_{a = 1}^N \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt {V^{(a)}}}\frac{1}{2}\rho \dot {u}_i^{(a)} \dot{u}_i^{(a)} {\rm d}V(55)$$
$$ U = \sum\limits_{a = 1}^N \Bigg\{ \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt {V^{(a)}}} \left[ A\left( u_i^{(a)} \right) - f_i^{(a)} u_i^{(a)} \right] {\rm d}V - \int\!\!\!\!\!\int\limits_{\kern-2.5pt S_\sigma ^{(a)} } T_i^{(a)} u_i^{(a)} {\rm d}S \Bigg\}(56)$$
其先决条件为式 (52)和式 (53). 这里$A(u_i )$为以$u_i$为变量的应变能函数, 对小位移理论
$$ A(u_i ) = \frac{1}{2}a_{ijkl} \left({\frac{1}{2}u_{i,j} + \frac{1}{2}u_{j,i} } \right)\left({\frac{1}{2}u_{k,l} + \frac{1}{2}u_{l,k} } \right)(57)$$
这便是适于有限元计算的Lagrange方程,它提供了有限元计算的位移协调元模型.
应用Lagrange乘子法, 将式 (52)和式 (53)纳入势能的表达式中, 则有
$$ U_m = U + \sum\limits_{a = 1}^N \Bigg[ \int\!\!\!\!\!\int\limits_{\kern-2.5pt S_{ab} } \left(u_i^{(a)} - u_i^{(b)} \right)\lambda _i {\rm d}S + \int\!\!\!\!\!\int\limits_{\kern-3pt S_u^{(a)} } \left(u_i^{(a)} - \bar {u}_i^{(a)} \right)\mu _i {\rm d}S \Bigg](58)$$
应用Lagrange方程, 则有
$$ \frac{\rm d}{{\rm d}t}\frac{\partial T_{\rm d}}{\partial \dot {u}_i^{(a)} } + \frac{\partial U_m }{\partial \dot {u}_i^{(a)} } = 0(59)$$
经过一系列的运算, 解得
$$ \lambda _i^{(a)} = a_{ijkl}^{(a)} \frac{1}{2}\left({u_{k,l}^{(a)} + u_{l,k}^{(a)} } \right)n_j^{(a)}(60)$$
$$ \lambda _i^{(b)} = - a_{ijkl}^{(b)}\frac{1}{2}\left( {u_{k,l}^{(b)} + u_{l,k}^{(b)} } \right)n_j^{(b)}(61)$$
$$ \mu _i^{(a)} =a_{ijkl}^{(a)} \frac{1}{2}\left( {u_{k,l}^{(a)} + u_{l,k}^{(a)} } \right)n_j^{(a)}(62)$$
将式 (60)和式 (62)代入式 (58), 可得
$$ U_m = U + \sum\limits_{a = 1}^N \Bigg[ {\int\!\!\!\!\int\limits_{\kern-2.5pt S_{ab} } {a_{ijkl}^{(a)} \frac{1}{2}\left( {u_{k,l}^{(a)} + u_{l,k}^{(a)} } \right)n_j^{(a)} \left( {u_i^{(a)} - u_i^{(b)} } \right){\rm d}S + } } $$
$$ {\int\!\!\!\!\!\int\limits_{\kern-3pt S_u^{(a)} } {a_{ijkl}^{(a)} \frac{1}{2}\left( {u_{k,l}^{(a)} + u_{l,k}^{(a)} } \right)n_j^{(a)} \left( {u_i^{(a)} - \bar {u}_i^{(a)} } \right)} {\rm d}S} \Bigg](63)$$
综合以上论述, 可得
$$ \frac{\rm d}{{\rm d}t}\frac{\partial T_{\rm d}}{\partial \dot {u}_i^{(a)} } + \frac{\partial U_m }{\partial \dot {u}_i^{(a)} } = 0(64)$$
其中
$$ \left. {\begin{array}{l} T_{\rm d}= \mathop{\int\!\!\!\!\int\!\!\!\!\int}\limits_{\kern-5.5pt {V^{(a)}}} {\sum\limits_{a = 1}^N {\frac{1}{2}\rho \dot {u}_i^{(a)} \dot {u}_i^{(a)} } } {\rm d}V \\ U_m = U + \sum\limits_{a = 1}^N \Bigg[ {\int\!\!\!\!\int\limits_{\kern-2.5pt S_{ab} } {a_{ijkl}^{(a)} \frac{1}{2}\left( {u_{k,l}^{(a)} + u_{l,k}^{(a)} } \right)n_j^{(a)} \left( {u_i^{(a)} - u_i^{(b)} } \right){\rm d}S + } } \\ \qquad {\int\!\!\!\!\!\int\limits_{\kern-3pt S_u^{(a)} } {a_{ijkl}^{(a)} \frac{1}{2}\left( {u_{k,l}^{(a)} + u_{l,k}^{(a)} } \right)n_j^{(a)} \left( {u_i^{(a)} - \bar {u}_i^{(a)} } \right)} {\rm d}S} \Bigg] \\ \end{array}} \right\}(65)$$
这便是适于有限元计算的Lagrange方程,它提供了有限元计算的位移杂交元模型.
所谓位移杂交是指, 在无际边界$S_{ab} $上, 放松了对条件 (52)的要求,即原来要求精确满足无际边界条件 (52),现在只要求近似满足无际边界条件 (52).
这里还有一个问题需要说明, 以上是将式 (60)代入式 (58)中,是否可以将式 (61)代入式 (58)中呢? 回答是肯定的.这里可以用Lagrange乘子表达式的不唯一性来解释.
可喜的是,应用Lagrange方程建立位移协调元模型和位移杂交元模型和应用Hamilton原理建立位移协调元模型和位移杂交元模型相同.进一步可以判断,应用Lagrange方程得到的有限元列式与应用Hamilton原理得到的有限元列式相同.
(1)连续介质分析动力学在学科性科学研究方面的前景
分析动力学的体系,有Lagrange体系、Hamilton体系、Lagrange-Hamilton体系,还有Birkhoff系统 (梅凤翔2013)、对称性与守恒量体系 (梅凤翔 2004).可见, 分析力学的体系确实是一个完美的体系 (钟万勰 2002).全面研究分析动力学的各个体系, 超出了本文的研究范围. 以下,仅展望连续介质分析动力学在学科性科学研究方面的前景.
1788年Lagrange出版世界上最早的一部分析力学专著《MécaniqueAnalytique》, 逐步形成分析动力学的Lagrange体系,其核心是Lagrange方程. 1834年和1843年W. R.Hamilton建立Hamilton原理和正则方程, 把分析力学推进一步.逐步形成分析动力学的Hamilton体系, 其核心是Hamilton原理.学术界一般认为Hamilton体系的优点是可以推广到新领域和应用变分学中的近似法来解题.基于这种认识, 在连续介质力学的研究领域中,对Hamilton原理的研究论文远远多于对Lagrange方程的研究论文.通过对Hamilton体系的广泛的、深入的研究, 有的学者甚至认为:理想流体力学, 弹性力学, 电动力学, 量子力学, 广义相对论,孤子与非线性波动理论, 都可以由 Hamilton体系来描述.
本文的工作表明,Lagrange-Hamilton体系把Lagrange体系和Hamilton体系联系起来,使得采用Hamilton体系能够完成的工作都可以用Lagrange体系来完成.例如, 上面提到理想流体力学可以由 Hamilton体系来描述;本文的工作表明, 不仅理想流体力学,而且不可压缩黏性流体动力学和可压缩黏性流体动力学都可以由Lagrange体系来描述.又例如, 上面提到弹性力学可以由 Hamilton体系来描述; 本文的工作表明,线性弹性动力学、非线性弹性动力学和黏弹性动力学都可以由Lagrange体系来描述.不仅如此, 本文作者的研究工作表明,刚--弹耦合动力学、刚--液耦合动力学、刚--弹--液耦合动力学、刚--弹--热耦合动力学和刚--弹--液--控耦合动力学都是既可以由Lagrange体系来描述,又可以由 Hamilton体系来描述.上面提到的电动力学、量子力学、广义相对论、孤子与非线性波动理论,包括它们构成的耦合学科, 经过认真地、深入地研究,都是既可以由Lagrange体系来描述, 又可以由 Hamilton体系来描述.由这些学科的杂交而来的耦合力学, 也应当是如此. 进一步,还可以研究出Lagrange体系的描述与Hamilton体系的描述各自的特点.可见, 这类研究有着广阔的前景. 但是, 由于这类研究涉及的学科繁多,要实现这种前景, 需要多个学科的学者的共同努力来完成.
(2)连续介质分析动力学在近似计算研究方面的前景
如前所述,学术界一般认为Hamilton体系的优点是可以推广到新领域和应用变分学中的近似法来解题.(1)中的论述表明, Lagrange体系和Hamilton体系一样,也可以推广到新领域. 下面将说明, 与Hamilton体系一样,Lagrange体系也可以应用变分学中的近似法来解题.
本文第7节以弹性动力学为例,研究了应用Lagrange方程建立有限元模型的问题. 研究表明,应用Lagrange方程得到的有限元列式与应用Hamilton原理得到的有限元列式相同.我们也曾对流体动力学和刚--弹耦合动力学进行同样的研究,得到同样的结论. 可见, 与Hamilton体系一样,Lagrange体系也可以应用变分学中的近似法来解题.
我们在研究弹性动力学的Hamilton原理和Lagrange方程时发现,将Hamilton原理和Lagrange方程退化到弹性静力学时, 都可以得到$\delta U = 0$, 这正是弹性静力学变分原理的表达式. 20世纪80年代,我国曾经出现变分原理的研究热潮, 主要研究弹性静力学的变分原理$(\delta U = 0)$.这个研究热潮推动了我国弹性静力学的变分原理理论发展,同时也完善了有限元素法的计算技术, 开发了大量的计算程序.由本文第7节可以发现, 应用Lagrange方程建立有限元模型时,并不涉及对时间的积分,便于将弹性静力学有限元素法的计算技术和开发的大量计算程序移植到弹性动力学中.在这种移植中, 注意将含加速度的项处理为含惯性力的项.
这里还可以进一步展望: 在展望(1)中提到,``还可以研究出Lagrange体系的描述与Hamilton体系的描述各自的特点''.经过长期的研究, Hamilton体系的描述的特点已经开发的比较充分.我们可以预言, 经过长期的研究,Lagrange体系的描述的特点也可以逐渐开发出来.例如``应用Lagrange方程建立有限元模型时, 并不涉及对时间的积分,便于将弹性静力学有限元素法的计算技术和开发的大量计算程序移植到弹性动力学中'',这便是Lagrange体系的描述的特点之一.
(3)电磁连续介质分析动力学
电磁连续介质理论研究的是电磁场与连续介质的相互作用.以往Maxwell和Lorentz关于电磁理论的研究都是建立在电磁介质不变形的基础上的.由于电磁元器件在使用过程中都会发生变形,许多情况下还和温度场耦合在一起,因此在变形介质中研究电磁连续介质理论, 越来越受到学术界的重视.对于磁流体连续介质理论, 实际上是等离子体流体力学.这类研究在航空和航天等高科技中有重要应用 (Dmitriy et al. 2007,Patel et al. 2007). 对于电磁固体介质, Kuang (2014)严格按照连续介质力学的方法系统地研究了变形电介质中的电场和机械力的作用,并基于电介质的物理变分原理, 进一步建立了电介质的Hamilton原理.梁立孚 (2011b)应用变积方法,建立了电磁场理论和压电力学的的变分原理和广义变分原理. Zheng 等(2010)建立了电动力学中电磁场的广义Hamilton原理. 黄彬彬等(2000)等应用变积方法,建立了压电材料Hamilton原理和各级广义Hamilton原理. Song 等(2013)应用变积方法,建立了压电体两类变量和三类变量的对偶形式的Hamilton原理. 王作君 等(2011)建立了电磁弹性动力学初边值问题12类变量广义Hamilton原理.Luo等 (2006)研究了电磁弹性动力学非传统Hamilton型变分原理. Luo 和Kuang (1999)建立了热压电体的Hamilton原理. Liu 和 Zhang(2007)在Hamilton体系下,建立了电磁热弹性壳的齐次状态向量方程和等参元列式. Song等(2009)应用变积方法建立了电磁热弹性体的Hamilton原理,但文献中建立的电磁热弹性体的变分原理不是完全耦合的变分原理,包含电磁弹性体的泛函和温度场的泛函两部分.
目前还没有关于电磁连续介质力学的Lagrange方程的研究. 按照前文所述,可以通过两种方式: 一是通过正确定义动能和势能,直接建立电磁连续介质力学的Lagrange方程;二是通过建立完全耦合的电磁连续介质力学的Hamilton原理,应用La-grange-Hamilton体系,进而建立电磁连续介质力学的Lagrange方程.
致 谢
The authors have declared that no competing interests exist.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
关于粘弹性力学的一些进展 . ,
本文结合近年来我们在粘弹性力学的理论、方法和应用等方面所进行的工作,较系统地介绍了粘弹性力学中某些重要问题的进展,其中,包括粘弹性问题的数学模型、粘弹性结构的变分原理与对应原理、求解粘弹性问题的计算方法、粘弹性结构的动力学行为与动力稳定性、粘弹性介质的散射和逆散射问题.
Advance on theory of viscoelasticity . ,
本文结合近年来我们在粘弹性力学的理论、方法和应用等方面所进行的工作,较系统地介绍了粘弹性力学中某些重要问题的进展,其中,包括粘弹性问题的数学模型、粘弹性结构的变分原理与对应原理、求解粘弹性问题的计算方法、粘弹性结构的动力学行为与动力稳定性、粘弹性介质的散射和逆散射问题.
|
[6] |
Lagrange系统lie点变换下的共形不变性与守恒量 . ,
研究Lagrange系统 Lie点变换下的共形不变性与守恒量,给出Lagrange系统的共形不变性定义和确定方程,讨论系统共形不变性与Lie对称性的关系,得到在无限小单参 数点变换群作用下系统共形不变性同时是Lie对称性的充要条件,导出系统相应的守恒量,并给出应用算例.
Conformal invariance and conserved quantity of Lagrange systems under lie point transformation . ,
研究Lagrange系统 Lie点变换下的共形不变性与守恒量,给出Lagrange系统的共形不变性定义和确定方程,讨论系统共形不变性与Lie对称性的关系,得到在无限小单参 数点变换群作用下系统共形不变性同时是Lie对称性的充要条件,导出系统相应的守恒量,并给出应用算例.
|
[7] |
|
[8] |
20世纪理论和应用力学十大进展 . ,
在我们迈步走向新世纪的时候,正值《力学进展》创刊30周年.为纪念这一特殊的历史时刻,《力学进展》举行了“20世纪理论和应用力学十大进展”评选活 动.本次活动历时半年多,经过编委会提名、初步筛选,确定出入围的20世纪理论和应用力学进展17项,分别请有关方面专家精心撰写了条目介绍,最后请从事 力学及与力学相关学科的研究人员投票.
Top ten progresses of theoretical and applied mechanics in twenty century . ,
在我们迈步走向新世纪的时候,正值《力学进展》创刊30周年.为纪念这一特殊的历史时刻,《力学进展》举行了“20世纪理论和应用力学十大进展”评选活 动.本次活动历时半年多,经过编委会提名、初步筛选,确定出入围的20世纪理论和应用力学进展17项,分别请有关方面专家精心撰写了条目介绍,最后请从事 力学及与力学相关学科的研究人员投票.
|
[9] |
|
[10] |
Lagrange方程应用于连续介质力学 . ,
如何将Lagrange方程应用于连续介质力学,一直是学术界关注的理论课题。应用变导的概念和运算法则,研究Lagrange方程中的求导的性质,进而将Lagrange方程应用于线性弹性动力学和非线性弹性动力学,并且给出相应的算例。结果表明,借鉴变积分学来解决将Lagrange方程应用于连续介质力学的问题是可行的。
Lagrange equation applied to continuum mechanics . ,
如何将Lagrange方程应用于连续介质力学,一直是学术界关注的理论课题。应用变导的概念和运算法则,研究Lagrange方程中的求导的性质,进而将Lagrange方程应用于线性弹性动力学和非线性弹性动力学,并且给出相应的算例。结果表明,借鉴变积分学来解决将Lagrange方程应用于连续介质力学的问题是可行的。
|
[11] |
结构的刚--热弹耦合稳定性问题研究 . ,
对于刚-热弹耦合动力学这类学科交叉问题, 尚无现成的控制方程可以利用. 由于变分原理是从总体上把握事物, 便于应用功能转化原理和能量守恒定律来研究问题. 应用刚-热弹耦合动力学的变分原理, 不仅可以建立刚-热弹耦合动力学的控制方程, 而且可以为刚-热弹耦合动力学的有限元建模提供方便. 本文根据功能转化原理和能量守恒定律, 建立刚-热弹耦合动力学变分原理, 给出刚-热弹耦合动力学变分原理的驻值条件, 得到刚-热弹耦合动力学的控制方程, 并且, 将以上成果转化为非惯性坐标系中的静力学问题. 作为该理论的应用, 研究了结构的刚-热弹耦合稳定性问题. 在非惯性坐标系中, 给出两向应力状态刚-热弹耦合临界应力. 最后, 讨论了有关问题.
Investigation of structural stability of rigid-thermo-elastic coupling . ,
对于刚-热弹耦合动力学这类学科交叉问题, 尚无现成的控制方程可以利用. 由于变分原理是从总体上把握事物, 便于应用功能转化原理和能量守恒定律来研究问题. 应用刚-热弹耦合动力学的变分原理, 不仅可以建立刚-热弹耦合动力学的控制方程, 而且可以为刚-热弹耦合动力学的有限元建模提供方便. 本文根据功能转化原理和能量守恒定律, 建立刚-热弹耦合动力学变分原理, 给出刚-热弹耦合动力学变分原理的驻值条件, 得到刚-热弹耦合动力学的控制方程, 并且, 将以上成果转化为非惯性坐标系中的静力学问题. 作为该理论的应用, 研究了结构的刚-热弹耦合稳定性问题. 在非惯性坐标系中, 给出两向应力状态刚-热弹耦合临界应力. 最后, 讨论了有关问题.
|
[12] |
刚--弹--液耦合动力学的功能型拟变分原理 . ,
随着火箭运载能力、卫星工作寿命和深空探测器任务复杂度的不断提高,液体推进剂占航天器总质量的比例也不断增加,充液系统动力学成为理论界关注的课题.本文在以往研究的基础上,应用功能转换原理和能量守恒定律,建立了充液系统刚-弹-液耦合动力学的功能型拟变分原理.通过推导拟驻值条件,建立了刚-弹-液耦合动力学的控制方程.本文对刚-弹-液耦合动力学的功能型拟变分原理在有限元素法中的应用进行了研究,为大规模液固耦合模型建模计算的应用研究提供了理论支持.
Quasi variational principle of the rigid-elastic-liquid coupling dynamics . ,
随着火箭运载能力、卫星工作寿命和深空探测器任务复杂度的不断提高,液体推进剂占航天器总质量的比例也不断增加,充液系统动力学成为理论界关注的课题.本文在以往研究的基础上,应用功能转换原理和能量守恒定律,建立了充液系统刚-弹-液耦合动力学的功能型拟变分原理.通过推导拟驻值条件,建立了刚-弹-液耦合动力学的控制方程.本文对刚-弹-液耦合动力学的功能型拟变分原理在有限元素法中的应用进行了研究,为大规模液固耦合模型建模计算的应用研究提供了理论支持.
|
[13] |
非完整约束系统几何动力学研究进展: Lagrange理论及其他 . ,
近10年来,非完整力学的发展主要集中在两个相互关联的方向上,一个是非完整运动规划,另一个则是非完整约束系统的几何动力学,这两个研究方向都充分地利用了现代几何学,如纤维丛理论、辛流形和Poisson流形结构等等.本文主要综述非完整约束系统几何动力学的外附型和内禀型Lagrange理论,包括非定常力学系统所需要的射丛几何学的基本概念、射丛按约束的直和分解、约束流形上的水平分布、D'Alembert-Lagrange方程与Chaplygin方程的整体描述、以及Riemann-Cartan流形上的非完整力学,文中对Chetaev条件和d-δ交换关系的几何意义作了深入讨论.除此之外,简要评述非完整力学的Hamilton理论与赝Poisson结构、Noether对称性和Lie对称性、动量映射与对称约化、Vakonomic动力学等几个非常重要专题的研究进展.
Progress of geometric dynamics of nonholonomic constrained mechanical systems: Lagrange theory and others . ,
近10年来,非完整力学的发展主要集中在两个相互关联的方向上,一个是非完整运动规划,另一个则是非完整约束系统的几何动力学,这两个研究方向都充分地利用了现代几何学,如纤维丛理论、辛流形和Poisson流形结构等等.本文主要综述非完整约束系统几何动力学的外附型和内禀型Lagrange理论,包括非定常力学系统所需要的射丛几何学的基本概念、射丛按约束的直和分解、约束流形上的水平分布、D'Alembert-Lagrange方程与Chaplygin方程的整体描述、以及Riemann-Cartan流形上的非完整力学,文中对Chetaev条件和d-δ交换关系的几何意义作了深入讨论.除此之外,简要评述非完整力学的Hamilton理论与赝Poisson结构、Noether对称性和Lie对称性、动量映射与对称约化、Vakonomic动力学等几个非常重要专题的研究进展.
|
[14] |
压电材料变分原理逆问题的研究------动力学中的逆问题 . ,
The inverse problems in Hamilton and Gurtin Calculus of Variations for coupled dynamic piezoelectric media were studied. Several kinds of Hamilton type and Gurtin type variational principles and generalized variational principles for piezoelectric media were established by using the VI method. The results can provide the criterion for the dynamic Finite Element Method analysis model for the transversely isotropic piezoelectric media.
On the inverse problem in calculus of variations for piezoelectric media---The inverse problem in dynamics . ,
The inverse problems in Hamilton and Gurtin Calculus of Variations for coupled dynamic piezoelectric media were studied. Several kinds of Hamilton type and Gurtin type variational principles and generalized variational principles for piezoelectric media were established by using the VI method. The results can provide the criterion for the dynamic Finite Element Method analysis model for the transversely isotropic piezoelectric media.
|
[15] |
关于线粘弹性动力学中各种变分原理 . ,
A unified new approach is proposed for the systematic Derivation of various simplified Gurtin-type variational principles in linear theory of dynamic viscoelasticity. The prime feature of this approach is the use of an important integral relation and generalized Le-gendre transformations given by the author. With this approach, it; is possible not only to derive the complementary functionals for the five-field, four-field, threefield, two-field and one-field simplified,Gurtin-type variational principles, bu...
On the variational principles for linear theory of dynamic viscoelasticity . ,
A unified new approach is proposed for the systematic Derivation of various simplified Gurtin-type variational principles in linear theory of dynamic viscoelasticity. The prime feature of this approach is the use of an important integral relation and generalized Le-gendre transformations given by the author. With this approach, it; is possible not only to derive the complementary functionals for the five-field, four-field, threefield, two-field and one-field simplified,Gurtin-type variational principles, bu...
|
[16] |
流体力学变分原理及其有限元法研究的进展 . ,
本文对流体力学变分原理的发展,特别是近二十来年连同育限元的发展与现状,作一简要的综合评述,并展望今后的发展方向,提供若干参考意见。
Research development of variation principles finite element method in fluid mechanics . ,
本文对流体力学变分原理的发展,特别是近二十来年连同育限元的发展与现状,作一简要的综合评述,并展望今后的发展方向,提供若干参考意见。
|
[17] |
温度场中的柔性梁系统动力学建模 . ,
研究温度场下带集中质量的柔性梁系统的动力学问题。考虑几何非线性,在纵向变形与轴向伸长的 关系式中计及了与横向变形有关的二次耦合项。考虑温度变化对系统动力学性态的影响,在本构关系式中计及了热应变。用假设模态法对各柔性梁进行离散,从虚功 原理出发,根据各柔性梁之间的运动学约束关系,建立了带集中质量的柔性梁系统的动力学方程。仿真结果表明.即使在转速较低的情况下,随着集中质量的增大和 温度的急剧变化,纵向变形的二次耦合项的影响不容忽视,此外,温度的变化还引起轴向变形和轴向约束力高频振荡。
Geometric nonlinear formulation of flexible beam systems in temperature field . ,
研究温度场下带集中质量的柔性梁系统的动力学问题。考虑几何非线性,在纵向变形与轴向伸长的 关系式中计及了与横向变形有关的二次耦合项。考虑温度变化对系统动力学性态的影响,在本构关系式中计及了热应变。用假设模态法对各柔性梁进行离散,从虚功 原理出发,根据各柔性梁之间的运动学约束关系,建立了带集中质量的柔性梁系统的动力学方程。仿真结果表明.即使在转速较低的情况下,随着集中质量的增大和 温度的急剧变化,纵向变形的二次耦合项的影响不容忽视,此外,温度的变化还引起轴向变形和轴向约束力高频振荡。
|
[18] |
a. 论航天器动力学中的一个理论问题 . ,
目前解决多柔体动力学问题主要是依赖于数值的、定量的分析方法,几乎没有人进行解析的分析讨论,这对于深刻把握系统的非线性力学实质、预测系统的全局动力学现象是十分不利的,因此,极有必要开展多柔体系统的理论分析.作为多柔体动力学理论分析的组成部分,该文研究航天器动力学中的一个理论问题,探讨了"为了进行具体分析,经常把矢量(矢量是一阶张量)方程投影到合适的动坐标系上"的法则的合理性.该文的理论分析的结果,不仅表明进行多柔体系统理论分析的必要性,而且为多柔体系统的合理建模提供了参考.
a. Investigation of a theoretical problem in spacecraft dynamics . ,
目前解决多柔体动力学问题主要是依赖于数值的、定量的分析方法,几乎没有人进行解析的分析讨论,这对于深刻把握系统的非线性力学实质、预测系统的全局动力学现象是十分不利的,因此,极有必要开展多柔体系统的理论分析.作为多柔体动力学理论分析的组成部分,该文研究航天器动力学中的一个理论问题,探讨了"为了进行具体分析,经常把矢量(矢量是一阶张量)方程投影到合适的动坐标系上"的法则的合理性.该文的理论分析的结果,不仅表明进行多柔体系统理论分析的必要性,而且为多柔体系统的合理建模提供了参考.
|
[19] |
|
[20] |
充液系统刚--液耦合动力学功能型拟变分原理 . ,
随着火箭运载能力、卫星工作寿命和深空探测器任务复杂度的不断提高,液体推进剂占航天器总质量的比重也不断增加,充液系统动力学成为理论界关注的课题。应用功能转换原理和能量守恒定律,通过耦合流体动力学功能型拟变分原理和刚体动力学功能型拟变分原理,建立充液系统刚-液耦合动力学功能型拟变分原理。文中研究了航天器充液贮箱液固耦合机理,对建立液体大幅晃动等效力学模型提供理论支持。
Quasi-variational principle of rigid-liquid coupling dynamics in liquid-filled system . ,
随着火箭运载能力、卫星工作寿命和深空探测器任务复杂度的不断提高,液体推进剂占航天器总质量的比重也不断增加,充液系统动力学成为理论界关注的课题。应用功能转换原理和能量守恒定律,通过耦合流体动力学功能型拟变分原理和刚体动力学功能型拟变分原理,建立充液系统刚-液耦合动力学功能型拟变分原理。文中研究了航天器充液贮箱液固耦合机理,对建立液体大幅晃动等效力学模型提供理论支持。
|
[21] |
|
[22] |
应用 Lagrange方程研究刚弹耦合动力学 . ,
如何将Lagrange方程应 用于连续介质力学,一直是学术界关注的理论课题。Lagrange方程建立和应用都涉及变分学,从变分学的基本理论研究做起,是研究这类问题的一条可行的 途径。应用变导的概念和运算法则,研究了Lagrange方程中的求导的性质,进而成功地将Lagrange方程应用于弹性动力学。根据功能原理和能量守 恒定律,给出刚弹耦合动力学的动能和势能,应用Lagrange方程,建立了刚弹耦合动力学的控制方程。这类研究在航天、航空、航海和机器人动力学中,都 有重要应用。
Research on rigid-elastic coupling dynamics using Lagrange equation . ,
如何将Lagrange方程应 用于连续介质力学,一直是学术界关注的理论课题。Lagrange方程建立和应用都涉及变分学,从变分学的基本理论研究做起,是研究这类问题的一条可行的 途径。应用变导的概念和运算法则,研究了Lagrange方程中的求导的性质,进而成功地将Lagrange方程应用于弹性动力学。根据功能原理和能量守 恒定律,给出刚弹耦合动力学的动能和势能,应用Lagrange方程,建立了刚弹耦合动力学的控制方程。这类研究在航天、航空、航海和机器人动力学中,都 有重要应用。
|
[23] |
|
[24] |
黏性流体力学的变分原理及其广义变分原理 . ,
本文通过引入Laplace变换,应用变积运算方法,建立了不可压缩粘性流体力学的变分原理及其广义变分原理.
Variational principles and generalized variational principles in hydrodynamics of viscous fluids . ,
本文通过引入Laplace变换,应用变积运算方法,建立了不可压缩粘性流体力学的变分原理及其广义变分原理.
|
[25] |
Lagrange方程应用于流体动力学 . ,
如何将Lagrange方程应用于流体动力学的问题是一个理论研究的难题。按照从变分学的基本理论研究做起的思想,本文应用变导的概念和运算法则,通过研究Lagrange方程中求导的性质,逐步地将Lagrange方程应用于理想流体动力学。按照从变分学的基本理论研究做起的思想,本文应用Lagrange-Hamilton体系,即非保守系统的Lagrange方程是非保守系统的Hamilton型拟变分原理的拟驻值条件,由不可压缩黏性流体动力学的Hamilton型拟变分原理推导出不可压缩黏性流体动力学的Lagrange方程,进而应用不可压缩黏性流体动力学的Lagrange方程推导出不可压缩黏性流体动力学的控制方程。探讨将Lagrange方程应用于可压缩黏性流体动力学问题中,推导出可压缩黏性流体动力学的控制方程。本文解决了如何将Lagrange方程应用于流体动力学的问题。
Application of Lagrange equation in fluid mechanics . ,
如何将Lagrange方程应用于流体动力学的问题是一个理论研究的难题。按照从变分学的基本理论研究做起的思想,本文应用变导的概念和运算法则,通过研究Lagrange方程中求导的性质,逐步地将Lagrange方程应用于理想流体动力学。按照从变分学的基本理论研究做起的思想,本文应用Lagrange-Hamilton体系,即非保守系统的Lagrange方程是非保守系统的Hamilton型拟变分原理的拟驻值条件,由不可压缩黏性流体动力学的Hamilton型拟变分原理推导出不可压缩黏性流体动力学的Lagrange方程,进而应用不可压缩黏性流体动力学的Lagrange方程推导出不可压缩黏性流体动力学的控制方程。探讨将Lagrange方程应用于可压缩黏性流体动力学问题中,推导出可压缩黏性流体动力学的控制方程。本文解决了如何将Lagrange方程应用于流体动力学的问题。
|
[26] |
充液航天器液体晃动和液固耦合动力学的研究与应用 . ,
As the capacity of launch vehicles, the lifespan of satellites and the complexity of deep space missions increase, the mass proportions of liquid propellant in spacecrafts are enhanced accordingly. Sloshing of liquid propellant in spacecrafts might affect the motion stability and the attitude and orbit control system, which is of particular concern in spacecraft dynamics. The sloshing liquid in a liquid-filled spacecraft is a distributed parameter system which is theoretically infinite dimensional, however, a simplified and reduced model is preferred in engineering. Therefore, equivalent mechanical models for liquid sloshing are continually studied. Moreover, the fluid-structure interaction between liquid propellant and tanks has important effects on the structural dynamics of spacecrafts, which is also of concern in liquid-filled spacecraft dynamics. First in this paper, the liquid sloshing studies are respectively reviewed regarding theoretical researches, numerical studies, experimental investigations and equivalent mechanical models. Then the numerical methods and application programs in fluid-structural interaction modeling are summarized. Finally, further research directions are suggested based on the development needs of spacecraft engineering.
Reviews on liquid sloshing dynamics and liquid-structure coupling dynamics in liquid-filled spacecrafts . ,
As the capacity of launch vehicles, the lifespan of satellites and the complexity of deep space missions increase, the mass proportions of liquid propellant in spacecrafts are enhanced accordingly. Sloshing of liquid propellant in spacecrafts might affect the motion stability and the attitude and orbit control system, which is of particular concern in spacecraft dynamics. The sloshing liquid in a liquid-filled spacecraft is a distributed parameter system which is theoretically infinite dimensional, however, a simplified and reduced model is preferred in engineering. Therefore, equivalent mechanical models for liquid sloshing are continually studied. Moreover, the fluid-structure interaction between liquid propellant and tanks has important effects on the structural dynamics of spacecrafts, which is also of concern in liquid-filled spacecraft dynamics. First in this paper, the liquid sloshing studies are respectively reviewed regarding theoretical researches, numerical studies, experimental investigations and equivalent mechanical models. Then the numerical methods and application programs in fluid-structural interaction modeling are summarized. Finally, further research directions are suggested based on the development needs of spacecraft engineering.
|
[27] |
|
[28] |
|
[29] |
|
[30] |
中国分析力学40年 . ,
概述了我国分析力学40年在基本概念、变分原理、运动方程、积分方法、专门问题、数学方法以及历史与现状等方面的研究成果,并对未来研究提出一些建议.
Forty years for analytical mechanics in China . ,
概述了我国分析力学40年在基本概念、变分原理、运动方程、积分方法、专门问题、数学方法以及历史与现状等方面的研究成果,并对未来研究提出一些建议.
|
[31] |
一阶lagrange系统的lie对称性与守恒量 . ,
将一阶微分方程组化成一阶Lagrange方程 .利用常微分方程在无限小变换下的不变性 ,建立Lie对称性的确定方程 .给出Lie对称性导致守恒量的条件以及守恒量的形式 .
Lie symmetries and conserved quantities of first order lagrange systems . ,
将一阶微分方程组化成一阶Lagrange方程 .利用常微分方程在无限小变换下的不变性 ,建立Lie对称性的确定方程 .给出Lie对称性导致守恒量的条件以及守恒量的形式 .
|
[32] |
|
[33] |
|
[34] |
弹性力学的Lagrange形式: 用Routh方法建立弹性有限变形问题的基本方程 . ,
将弹性有限变形问题主Lagange力学的理论体系中,并用经典力不中业已存在的Routh方法构建了有限变形平面应变问题和有限变形平面应力问题的基本微分方程,讨论了有限变形大挠度总理2von karman方程中 的矛盾进而提出了两种改进方案。
Lagrange formalism of elasticity: Building the basic equations on finite-deformation problems by Routh's method . ,
将弹性有限变形问题主Lagange力学的理论体系中,并用经典力不中业已存在的Routh方法构建了有限变形平面应变问题和有限变形平面应力问题的基本微分方程,讨论了有限变形大挠度总理2von karman方程中 的矛盾进而提出了两种改进方案。
|
[35] |
|
[36] |
多体系统Lagrange方程数值算法的研究进展 . ,
The Lagrange's method is one of the general methods to derive the dynamic equations for multibody systems, which are in the form of ordinary differential equations or differential-algebraic equations. Numerical analysis is an important way to investigate the behaviors of the dynamics of multibody systems. In this paper, the first kind and the second kind of Lagrange's equations and the modified Lagrange's equations for multibody systems with their canonical forms are introduced, together with the characteristics of their numerical solutions. The advances are reviewed in the following numerical methods, symplectic algorithms and the implicit algorithms for the dynamic equations of multibody systems, as well as other algorithms for dynamic behaviors of multibody systems, such as Poincar茅 maps and Lyapunov exponents.
Advances in the numerical methods for Lagrange's equations of multibody systems . ,
The Lagrange's method is one of the general methods to derive the dynamic equations for multibody systems, which are in the form of ordinary differential equations or differential-algebraic equations. Numerical analysis is an important way to investigate the behaviors of the dynamics of multibody systems. In this paper, the first kind and the second kind of Lagrange's equations and the modified Lagrange's equations for multibody systems with their canonical forms are introduced, together with the characteristics of their numerical solutions. The advances are reviewed in the following numerical methods, symplectic algorithms and the implicit algorithms for the dynamic equations of multibody systems, as well as other algorithms for dynamic behaviors of multibody systems, such as Poincar茅 maps and Lyapunov exponents.
|
[37] |
电磁弹性动力学初边值问题12类变量广义变分原理 . ,
基于Yao建立的电磁弹性固体广义变分原理,运用关于非传统Hamilton型广义变分原理的方法,建立了电磁弹性动力学初边值问题的12类变量广义变分原理,可反映该问题的全部特征,其独立变分变量为该问题的全部变量,即位移、速度、动量、应变、应力、电位移、磁感应强度、电场强度、磁场强度、电标量势、磁标量势和磁矢量势。本文建立的广义变分原理可为电磁弹性动力学提供建立杂交或混合有限元等变分近似解法的理论基础。
Twelve-field generalized variational principles for initial-boundary-value problem of magneto-electroelasto dynamics . ,
基于Yao建立的电磁弹性固体广义变分原理,运用关于非传统Hamilton型广义变分原理的方法,建立了电磁弹性动力学初边值问题的12类变量广义变分原理,可反映该问题的全部特征,其独立变分变量为该问题的全部变量,即位移、速度、动量、应变、应力、电位移、磁感应强度、电场强度、磁场强度、电标量势、磁标量势和磁矢量势。本文建立的广义变分原理可为电磁弹性动力学提供建立杂交或混合有限元等变分近似解法的理论基础。
|
[38] |
|
[39] |
高超声速有翼导弹多场耦合动力学的研究和进展 (下) . ,
在对国内外文献调研的基础上,就有关高超声速有翼导弹多场耦合动力学分析和仿真技术的研究和发展现状进行评述,包括气动加热、大攻角非定常气动力、结构传热和温度场分析、热弹性耦合和热模态分析、耦合动力学分析的数学模型和求解方法等内容。最后针对高超声速有翼导弹提出进一步研究开发的建议。
Investigation and development of the multi-physics coupling dynamics on the hypersonic winged missiles . ,
在对国内外文献调研的基础上,就有关高超声速有翼导弹多场耦合动力学分析和仿真技术的研究和发展现状进行评述,包括气动加热、大攻角非定常气动力、结构传热和温度场分析、热弹性耦合和热模态分析、耦合动力学分析的数学模型和求解方法等内容。最后针对高超声速有翼导弹提出进一步研究开发的建议。
|
[40] |
|
[41] |
非保守系统的Lagrange方程 . ,
如何将Lagrange方程应用于连续介质动力学,一直是学术界关注的理论课题.如何将Lagrange方程应用于非保守连续介质动力学的问题的研究难度更大.本文应用Lagrange-Hamilton体系,非保守系统的Lagrange方程是非保守系统的Hamilton型拟变分原理的拟驻值条件,成功地将Lagrange方程应用于非保守连续介质动力学.进而应用非保守系统的Lagrange方程推导出非保守连续介质动力学的控制方程,为研究非保守连续介质动力学开辟了一条新的有效途径.
Lagrange equation of non-conservative systems . ,
如何将Lagrange方程应用于连续介质动力学,一直是学术界关注的理论课题.如何将Lagrange方程应用于非保守连续介质动力学的问题的研究难度更大.本文应用Lagrange-Hamilton体系,非保守系统的Lagrange方程是非保守系统的Hamilton型拟变分原理的拟驻值条件,成功地将Lagrange方程应用于非保守连续介质动力学.进而应用非保守系统的Lagrange方程推导出非保守连续介质动力学的控制方程,为研究非保守连续介质动力学开辟了一条新的有效途径.
|
[42] |
含阻尼非保守分析力学的拟变分原理 . ,
明确了含阻尼非保守分析力学问 题的控制方程,按照广义力和广义位移之间的对应关系,将各控制方程乘以相应的虚量,积分并代数相加,考虑到系统的非保守特性,进而建立了非保守分析力学问 题的拟变分原理和广义拟变分原理.应用拟Hamilton原理研究了具有阻尼的二自由度非保守动力系统的算例.
Quasi-variational principles on non-conservative analytical mechanics with damping . ,
明确了含阻尼非保守分析力学问 题的控制方程,按照广义力和广义位移之间的对应关系,将各控制方程乘以相应的虚量,积分并代数相加,考虑到系统的非保守特性,进而建立了非保守分析力学问 题的拟变分原理和广义拟变分原理.应用拟Hamilton原理研究了具有阻尼的二自由度非保守动力系统的算例.
|
[43] |
|
[44] |
Lagrange系统对称性的摄动与hojman型绝热不变量 . ,
研究Lagrange系统对称 性的摄动与绝热不变量.列出未受扰Lagrange系统的Lie对称性导致的Hojman守恒量;基于力学系统的高阶绝热不变量的定义,研究在小扰动作用 下Lagrange系统Lie对称性的摄动,得到了系统的一类Hojman形式的绝热不变量.并举例说明结果的应用.
Perturbation of symmetries and hojman adiabatic invariants for Lagrangian systems . ,
研究Lagrange系统对称 性的摄动与绝热不变量.列出未受扰Lagrange系统的Lie对称性导致的Hojman守恒量;基于力学系统的高阶绝热不变量的定义,研究在小扰动作用 下Lagrange系统Lie对称性的摄动,得到了系统的一类Hojman形式的绝热不变量.并举例说明结果的应用.
|
[45] |
非保守力与非完整约束对lagrange系统noether对称性的影响 . ,
研究非保守力和非完整约束对Lagrange系统的Noether对称性的影响 .Lagrange系统受到非保守力或非完整约束作用时 ,系统的Noether对称性和守恒量都会发生变化 .原有的一些Noether对称性消失了 ,一些新的Noether对称性产生了 ,在一定条件下 ,一些Noether对称性仍保持不变 .分别给出系统的Noether对称性以及守恒量保持不变的条件 ,并举例说明结果的应用
Effects of non-conservative forces and nonholonomic constraints on noether symmetries of a Lagrange system . ,
研究非保守力和非完整约束对Lagrange系统的Noether对称性的影响 .Lagrange系统受到非保守力或非完整约束作用时 ,系统的Noether对称性和守恒量都会发生变化 .原有的一些Noether对称性消失了 ,一些新的Noether对称性产生了 ,在一定条件下 ,一些Noether对称性仍保持不变 .分别给出系统的Noether对称性以及守恒量保持不变的条件 ,并举例说明结果的应用
|
[46] |
Variational principles for the equations of porous piezoelectric ceramics . ,
The governing equations of a porous piezoelectric continuum are presented in variational form, though they were well established in differential form. Hamilton's principle is applied to the motions of a regular region of the continuum, and a three-field variational principle is obtained with some constraint conditions. By removing the constraint conditions that are usually undesirable in computation through an involutory transformation, a unified variational principle is presented for the region with a fixed internal surface of discontinuity. The unified principle leads, as its Euler-Lagrange equations, to all the governing equations of the region, including the jump conditions but excluding the initial conditions. Certain special cases and reciprocal variational principles are recorded, arid they are shown to recover some of the earlier ones.
|
[47] |
Analytical continuum mechanics la Hamilton-Piola least action principle for second gradient continua and capillary fluids . ,
In this paper a stationary action principle is proven to hold for capillary fluids, i.e. fluids for which the deformation energy has the form suggested, starting from molecular arguments, for instance by Cahn and Hilliard. Remark that these fluids are sometimes also called Korteweg-de Vries or Cahn-Allen. In general continua whose deformation energy depend on the second gradient of placement are called second gradient (or Piola-Toupin or Mindlin or Green-Rivlin or Germain or second gradient) continua. In the present paper, a material description for second gradient continua is formulated. A Lagrangian action is introduced in both material and spatial description and the corresponding Euler-Lagrange bulk and boundary conditions are found. These conditions are formulated in terms of an objective deformation energy volume density in two cases: when this energy is assumed to depend on either C and grad C or on C^-1 and grad C^-1 ; where C is the Cauchy-Green deformation tensor. When particularized to energies which characterize fluid materials, the capillary fluid evolution conditions (see e.g. Casal or Seppecher for an alternative deduction based on thermodynamic arguments) are recovered. A version of Bernoulli law valid for capillary fluids is found and, in the Appendix B, useful kinematic formulas for the present variational formulation are proposed. Historical comments about Gabrio Piola's contribution to continuum analytical mechanics are also presented. In this context the reader is also referred to Capecchi and Ruta.
|
[48] |
Variational principles and generalized variational principles in hydrodynamics of viscous fluids . ,
In this paper, the variational principles of hydrodynamic problems for the incompressible and compressible viscous fluids are established. These principles are principles of maximum power losses. Their generalized variational principles are also discussed on the basis of Lagrangian multiplier methods.
|
[49] |
Conformal invariance and Hojman conserved quantities of first order Lagrange systems . , |
[50] |
Nonlinear theory of continuous media . ,
Not Available
|
[51] |
Discrete hamilton's equations for viscous compressible fluid dynamics . , ~
Lagrange’s and Hamilton’s equations are used extensively in numerical modeling of rigid body dynamics and continuum solid dynamics problems. The use of energy methods in viscous compressible flow problems has been by contrast rather limited, largely confined to the development of basic balance laws in partial differential equation form. However, finite element interpolation of the modeled flow field allows for the direct application of the discrete form of Hamilton’s equations to viscous compressible fluid dynamics in Eulerian frames. The resulting model is a true energy formulation, developed without reference to the partial differential balance equations which underlie conventional finite difference, weighted residual finite element, and finite volume methods.
|
[52] |
Variational principles in~continuum~mechanics . ,
Variational principles for problems in fluid dynamics, plasma dynamics and elasticity are discussed in the context of the general problem of finding a variational principle for a given system of equations. In continuum mechanics, the difficulties arise when the Eulerian description is used; the extension of Hamilton's principle is straightforward in the Lagrangian description. It is found that the solution to these difficulties is to represent the Eulerian velocity v by expressions of the type v = nabla + nabla introduced by Clebsch (1859) for the case of isentropic fluid flow. The relation with Hamilton's principle is elucidated following work by Lin (1963). It is also shown that the potential representation of electromagnetic fields and the variational principle for Maxwell's equations can be fitted into the same overall scheme. The equations for water waves, waves in rotating and stratified fluids, Rossby waves, and plasma waves are given particular attention since the need for variational formulations of these equations has arisen in recent work on wave propagation (Whitham 1967). The idea of solving some of the equations by 'potential representations' (such as the Clebsch representation in continuum mechanics and the scalar and vector potentials in electromagnetism), and then finding a variational principle for the remaining equations, seems to be the crucial one for the general problem. An analogy with Pfaff's problem in differential forms is given to support this idea.
|
[53] |
Variational theory of mixtures in continuum mechanics . , ~ |
[54] |
Hamiltonian and Lagrangian theory of viscoelasticity . ,
The viscoelastic relaxation modulus is a positive-definite function of time. This property alone allows the definition of a conserved energy which is a positive-definite quadratic functional of the stress and strain fields. Using the conserved energy concept a Hamiltonian and a Lagrangian functional are constructed for dynamic viscoelasticity. The Hamiltonian represents an elastic medium interacting with a continuum of oscillators. By allowing for multiphase displacement and introducing memory effects in the kinetic terms of the equations of motion a Hamiltonian is constructed for the visco-poroelasticity.
|
[55] |
Discrete Lagrange equations for reacting thermofluid dynamics in arbitrary Lagrangian-Eulerian frames . , |
[56] |
Classical Mechanics (3rd Edition) . |
[57] |
Part I 1834, Part II 1835. On a general method in dynamics. Philosophical Transaction of the Royal Society , |
[58] |
The equations of Lagrange written for a non-material volume . ,
The Lagrange equations are extended with respect to a non-material volume which instantaneously coincides with some material volume of a continuous body. The surface of the non-material volume is allowed to move at a velocity which is different from the velocity of the material surface. The non-material volume thus represents an arbitrarily moving control volume in the terminology of fluid mechanics. The extension of the Lagrange equations to a control volume is derived by using the method of fictitious particles. Within a continuum mechanics based framework, it is assumed that, the instantaneous positions of both, the original particles included in the material volume, and the fictitious particles included in the control volume, are given as function of their positions in the respective reference configurations, of a set of time-dependent generalized coordinates, and of time. The corresonding spatial formulations are also assumed to be available. Imagining that the fictitious particles do transport the density of kinetic energy of the original particles, the partial derivatives of the total kinetic energy included in the material volume with respect to generalized coordinates and velocities are related to the respective partial derivatives of the total kinetic energy contained in the control volume. Hence follow the Lagrange equations for a control volume by substituting the above relations into the classical formulations for a material volume. In the present paper, holonomic problems are considered. The correction terms in the newly derived version of the Lagrange equations contain the flux of kinetic energy appearing to be transported through the surface of the control volume. This flux comes into the play in the form of properly formulated partial derivatives. Our version of the Lagrange equations is tested using the rocket equation and a folded falling string as illustrative examples.
|
[59] |
Lagrange's equations for open systems, derived via the method of fictitious particles, and written in the Lagrange description of continuum mechanics . ,
In the present paper, a formulation of Lagrange’s equations, written in the framework of the Lagrange (material) description of Continuum Mechanics, is provided for open systems. An open system is...
|
[60] |
A methodology for coupling an atomic model with a continuum model using an extended Lagrange function . ,
We propose a hybrid method combining an atomic model and a continuum model, in which the displacement field of the continuum is introduced as a new degree of freedom by extending 's Lagrange function for constant-pressure molecular dynamics. We applied our method to a one-dimensional hybrid model which is composed of an atomic chain and springs. Large-scale fluctuation of the atomic system is found in the hybrid model. The density of states of the phonon is derived, and the large-scale fluctuation induces the generation of a variety of states of phonons. It is shown that the hybrid model proposed by our methodology enables us to perform large-scale simulations without intensive computations.
|
[61] |
Extended framework of Hamilton's principle for continuum dynamics . ,
Hamilton’s principle is the variational principle for dynamical systems, and it has been widely used in mathematical physics and engineering. However, it has a critical weakness, termed end-point constraints, which means that in the weak form, we cannot use the given initial conditions properly. By utilizing a mixed formulation and sequentially assigning initial conditions, this paper presents a novel extended framework of Hamilton’s principle for continuum dynamics, to resolve such weakness. The primary applications lie in an elastic and a J2-viscoplastic continuum dynamics. The framework is simple, and initiates the development of a space–time finite element method with the proper use of initial conditions. Non-iterative numerical algorithms for both elasticity and J2-viscoplasticity are presented.
|
[62] |
Theory of Electroelasticity . . |
[63] |
Variational formulation of the problem of mooring (anchor) line dynamics . , |
[64] |
Application of arbitrary Lagrange Euler formulations to flow-induced vibration problems . , |
[65] |
Some basic principles for linear coupled dynamic thermopiezoelectricity . ,
According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified way some basic principles for linear coupled dynamic thermopiezoelectricity can be established systematically . An important integral relation in terms of convolutions is given, which can be considered as the generalized principle of virtual work in mechanics, Based on this relation, it is possible not only to obtain the principle of virtual work and the reciprocal theorem in linear coupled dynamic thermopiezoelectricity, but also to derive systematically the complementary functionals for eleven-field, nine-field, six-field and three-field simplified Gurtin-type variational principles . Furthermore, with this approach, the intrinsic relationship among various principles can be explained clearly.
|
[66] |
Unconventional Hamilton-type variational principles for electromagnetic elastodynamics . ,
According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for electromagnetic elastodynamics can be established systematically. This new variational principles can fully characterize the initial-boundary-value problem of this dynamics. In this paper, the expression of the generalized principle of virtual work for electromagnetic dynamics is given. Based on this equation, it is possible not only to obtain the principle of virtual work in electromagnetic dynamics, but also to derive systematically the complementary functionals for eleven-field, nine-field and six-field unconventional Hamilton-type variational principles for electromagnetic elastodynamics, and the potential energy functionals for four-field and three-field ones by the generalized Legendre transformation given in this paper. Furthermore, with this approach, the intrinsic relationship among various principles can be explained clearly.
|
[67] |
(Originally published in l788) . .
|
[68] |
The generalized quasi-variational principles of non-conservative systems with two kinds of variables . ,
The initial twelve persistent organic pollutants (POPs) in Stockholm Convention on Persistent Or-ganic Pollutions include many organochlorinated pes-ticides (OCPs) and some industrial by-products from manufacture processes, most of which are lipophilic o
|
[69] |
Quasi-variational principles of single flexible body dynamics and their applications . ,
The reasons for studying single flexible body dynamics are that on one hand,it is the basis of flexible multi-body dynamics.If the theory of the single flexible body dynamics has been deeply studied,the theory of flexible multi-body dynamics will be researched easily.On the other hand,it has its unique and important applications.Quasi-variational principle of non-conservative single flexible body dynamics is established under the cross-link of particle rigid body mechanics and deformable body mechanics.Taking the interceptor as an example,this paper has explained the physical meaning of the quasi-stationary value condition of the quasi-variational principle in non-conservative single flexible body dynamics.Taking the launch of rocket as an example,it has illustrated the features of"one force for two effects"in a single flexible body dynamics.With an example of the extending flexible beam coupled with the spacecraft attitude,it has shown the transition from the single flexible body dynamics to the flexible multi-body dynamics.Finally,a number of related problems are discussed.
|
[70] |
Non-linear and non-conservative quasi-variational principle of flexible body dynamics and application in spacecraft dynamics . ,
The law of conservation of energy is one of the most fundamental laws of nature. According to the law of the conservation of energy, the non-linear and non-conservative quasi-variational principle of flexible body dynamics is established. The physical meaning of the quasi-stationary value conditions has been explained in non-linear and non-conservative flexible body dynamics. In the case study, the application in spacecraft dynamics is researched.
|
[71] |
Variation principle of piezothermoelastic bodies, canonical equation and homogeneous equation . ,
Combining the symplectic variations theory, the homogeneous control equation and isoparametric element homogeneous formulations for piezothermoelastic hybrid laminates problems were deduced. Firstly, based on the generalized Hamilton variation principle, the non-homogeneous Hamilton canonical equation for piezothermoelastic bodies was derived. Then the symplectic relationship of variations in the thermal equilibrium formulations and gradient equations was considered, and the non-homogeneous canonical equation was transformed to homogeneous control equation for solving independently the coupling problem of piezothermoelastic bodies by the incensement of dimensions of the canonical equation. For the convenience of deriving Hamilton isoparametric element formulations with four nodes, one can consider the temperature gradient equation as constitutive relation and reconstruct new variation principle. The homogeneous equation simplifies greatly the solution programs which are often performed to solve nonhomogeneous equation and second order differential equation on the thermal equilibrium and gradient relationship.
|
[72] |
Form invariance of Lagrange system . ,
To study a form invariance of Lagrange system, the form invariance of Lagrange equations under the infinitesimal transformations was used. The definition and criterion for the form invariance are given. The relation between the form invariance and the Noether symmetry was established.
|
[73] |
Form invariances and lutzky conserved quantities for Lagrange systems . ,
This paper focuses on studying a form invariance which can result in a Lutzky conserved quantity for a Lagrange system. The criterion of the form invariance for the system is given. The necessary and sufficient condition under which the form invariance is a Lie symmetry for the system is obtained. Lutzky's result is utilized to prove that the form invariance can lead to a Lutzky conserved quantity. Two examples are finally given to illustrate the application of the result.
|
[74] |
A generalized variational principle for dissipative hydrodynamics and its application to Biot's theory for the description of a fluid shear relaxation . ,
ABSTRACT A generalization of Hamilton's and Onsager's variational principles for dissipative hydrodynamical systems is represented in terms of the mechanical and heat displacement fields. A system of equations for these fields is derived from the extreme condition case using a Lagrangian formulation for the difference between the kinetic and the free energies and for the time integral of the dissipation function. The generalized hydrodynamic equation system is then evaluated using the generalized variational principle. At low frequencies this system corresponds to the traditional Navier-Stokes equations and in the high frequency limit it describes propagation of acoustical and heat modes with finite propagation velocities. Based on the generalized variational principle a system of Biot-type equations is derived that takes into account the fluid shear viscosity relaxation. This leads to the existence of two shear propagation modes in addition to two longitudinal modes as found in the original Biot approach. One of the two shear modes is an acoustical wave, while the other is a low-frequency diffusive wave. The phase velocity and attenuation factor for the second shear mode depend linearly on the frequency. This behavior is different from that of the diffusive longitudinal mode which depends on the square root of the frequency.
|
[75] |
Dynamics of a mass-spring-beam with 0: 1: 1 internal resonance using the analytical and continuation method . ,
The nonlinear harmonic response of an autoparametric system comprised of a linear oscillator with a vertically attached flexural beam is investigated and the capability of the beam as a vibration absorber is assessed. A weak torsional spring is used for constraining the rotation of the beam giving rise to an almost non-flexural rotational mode with a low frequency. The system parameters are also tuned to enforce the zero-to-one-to-one internal resonance condition. The Lagrange formulation accompanied by the assumed-mode method is used to derive the discretized equations based on the order three nonlinear Euler ernoulli beam theory. An analytical solution is developed based on the method of multiple scales where the generalized coordinate corresponding to the non-flexural rotational mode is approximated by higher order perturbation expansion than the other coordinates, due to much larger contribution of the non-flexural rotation to the response. Comprehensive response and bifurcation analysis are performed using analytical and direct numerical solutions. The results are obtained for vertically-aligned and also initially inclined beams and various interesting behaviors are recognized for different non-dimensional system parameters. Different types of bifurcations such as the Pitch-fork, Hopf, Period-doubling and symmetry breaking bifurcations are observed in the solution of slow-flow equations and some of them are found to be beneficial for vibration absorption in a limited range of excitation amplitudes and frequencies.
|
[76] |
Modeling and experiment of leading edge separation control using SDBD plasma actuators . ,
ABSTRACT This work presents the study of the single-dielectric barrier discharge aerodynamic plasma actuator. To model the physics of the plasma discharge, a space-time lumped- element circuit model was developed. The model solution compared well to some of the characteristic features of the discharge such as the dependence of the sweep velocity and maximum extent of the ionized air as functions of the applied voltage and a.c. driving frequency. The time-dependent charge distribution obtained from the model was used to provide boundary conditions to the electric field equation that was used to calculate the time dependent electric potential. The was then used to calculate the space-time distribu- tion of the actuator body force. An application of the plasma actuators to the leading-edge separation control on the NACA 0021 airfoil was studied numerically and experimentally. The results were obtained for a range of angles of attack for uncontrolled flow, and steady and unsteady plasma actuators located at the leading edge of the airfoil. The control of the lift stall was of particular interest. Improvement in the airfoil characteristics were observed in the numerical simulations at post-stall angles of attack with the plasma actuators. The computational results corresponded very well with the experiments.
|
[77] |
|
[78] |
Plasma actuators for hingeless aerodynamic control of an unmanned air vehicle . ,
The use of dielectric barrier discharge plasma actuators for hingeless flow control over a 47-deg 1303 unmanned combat air vehicle wing is described. Control was implemented at the wing leading edge to provide longitudinal control without the use of hinged control surfaces. Wind-tunnel tests were conducted at a chord Reynolds number of 4.12 x 105 and angles of attack ranging from 15 to 35 deg to evaluate the performance of leading-edge plasma actuators for hingeless flow control. Operated in an unsteady mode, the actuators were used to alter the flowfield over the lee-side wing to modify the aerodynamic lift and drag forces on the vehicle. Multiple configurations of the plasma actuator were tested on the lee side and wind side of the wing leading edge to affect the wing aerodynamics. Data acquisition included force-balance measurements, laser fluorescence, and surface flow visualizations. Flow visualization tests mainly focused on understanding the vortex phenomena over the baseline uncontrolled wing to aid in identifying optimal locations for plasma actuators for effective flow manipulation. Force-balance results show considerable changes in the lift and drag characteristics of the wing for the plasma-controlled cases compared with the baseline cases. When compared with the conventional traditional trailing-edge devices, the plasma actuators demonstrate a significant improvement in the control authority in the 15- to 35-deg angle-of-attack range, thereby extending the operational flight envelope of the wing. The study demonstrates the technical feasibility of a plasma wing concept for hingeless flight control of air vehicles, in particular, vehicles with highly swept wings and at high angles of attack flight conditions in which conventional flaps and ailerons are ineffective.
|
[79] |
On a problem of Lagrange . , |
[80] |
Rigid--elastic-thermal coupling dynamics and its application . , |
[81] |
Dual form of generalized variational principles for piezoelectricity . ,
Because of electromechanical coupled properties and anisotropy of piezoelectric materials, it is quite a challenge to obtain analytical solution and numerical solution. In the paper, the dual form of the generalized VPs for piezoelectricity are established using the variational integral method and form the Hamilton symplectic dual system for piezoelectricity. These then provide the theoretical foundation of the finite element method for piezoelectricity.
|
[82] |
Generalized variational principles of electro-magneto-thermo-elasto-dynamics . , |
[83] |
Continuum mechanics and Lagrange equations with generalised coordinates . ,
The main aim of the actual problem is to obtain Lagrange equations when the chosen parameters do not respect material rigidity, so inducing strains (and Continuum Mechanics). The proposed method consist of two principal parts: first the definition of a family of generalised displacements involving strains and second the elimination of the Cauchy stress tensor in the Virtual Work Principle valuable in Continuum Mechanics. As a final statement the rigidity law is introduced on the parameters to complete the obtained equations. On a friction problem, it is highlighted the necessity to really distinguish between these mathematical compatibility conditions taking account of the nature of the material and other relations expressing some experimental boundary conditions like friction laws.
|
[84] |
A variational principle for fluid mechanics . ,
A variational principle for fluid mechanics is derived without calling for any additional postulates in any ad hoc way. In the principle derived here, the Lagrangian is essentially the sum of kinetic and heat energy transferred to the fluid, less the sum of its internal and potential energy, less the work done on its exterior (similar to the enthalpy concept), rather than the difference between only kinetic energy and internal energy, as obtained previously by Seliger and Whitham [1] for a more restricted mode of variation.
|
[85] |
Hamilton's principle as inequality for inelastic bodies . ,
This paper is concerned with Hamilton’s principle for inelastic bodies with conservative external forces. Inelasticity is described by internal variable theory by Rice (J Mech Phys Solids 19:433–455,
|
[86] |
Hamilton's mixed variational formula for dynamical problems of anisotropic elastic bodies . , |
[87] |
Generalized variational principles for boundary value problem of electromagnetic field in electrodynamics . ,
An expression of the generalized principle of virtual work for the boundary value problem of the linear and anisotropic electromagnetic field is given. Using Chien's method, a pair of generalized variational principles (GVPs) are established, which directly leads to all four Maxwell's equations, two intensity-potential equations, two constitutive equations, and eight boundary conditions. A family of constrained variational principles is derived sequentially. As additional verifications, two degenerated forms are obtained, equivalent to two known variational principles. Two modified GVPs are given to provide the hybrid finite element models for the present problem.
|
[88] |
On the variational formulation of the extended thick anisotropic shells theory of I. N. vekua type . ,
A new variant of the I. N. Vekua A. A. Amosov extended theory of thick anisotropic shells is constructed on the groundwork of the Lagrange variational formalism of analytical mechanics of continua and the dimensional reduction approach. The shell model consists in the set of field variables, the surface Lagrangiandensity, and the constraint equations defined on the two-dimensional manifold corresponding to the base surface. The supplementary constraints are derived from the boundary conditions on shell's faces. The field variables of the first kind are biorthogonal expansion's coefficients for the displacement vector. This constrained variational problem is solving by the Lagrange multipliers method that results the two-dimensional initial-boundary value problem of the general shell theory.
|
/
〈 | 〉 |