留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于箭形累积损伤的裂纹尖端力学:奇异性分级和多尺度分段

薛昌明

薛昌明. 基于箭形累积损伤的裂纹尖端力学:奇异性分级和多尺度分段[J]. 力学进展, 2010, 40(2): 203-229. doi: 10.6052/1000-0992-2010-2-J2009-159
引用本文: 薛昌明. 基于箭形累积损伤的裂纹尖端力学:奇异性分级和多尺度分段[J]. 力学进展, 2010, 40(2): 203-229. doi: 10.6052/1000-0992-2010-2-J2009-159
CRACK TIP MECHANICS BASED ON PROGRESSIVE DAMAGE OF ARROW: HIERARCHY OF SINGULARITIES AND MULTISCALE SEGMENTS[J]. Advances in Mechanics, 2010, 40(2): 203-229. doi: 10.6052/1000-0992-2010-2-J2009-159
Citation: CRACK TIP MECHANICS BASED ON PROGRESSIVE DAMAGE OF ARROW: HIERARCHY OF SINGULARITIES AND MULTISCALE SEGMENTS[J]. Advances in Mechanics, 2010, 40(2): 203-229. doi: 10.6052/1000-0992-2010-2-J2009-159

基于箭形累积损伤的裂纹尖端力学:奇异性分级和多尺度分段

doi: 10.6052/1000-0992-2010-2-J2009-159

CRACK TIP MECHANICS BASED ON PROGRESSIVE DAMAGE OF ARROW: HIERARCHY OF SINGULARITIES AND MULTISCALE SEGMENTS

  • 摘要: 在适度的空间和时间尺度组合下, 裂纹既可在几个月中蠕变几个纳米,也能在几秒钟内扩展10\,km. 虽然裂纹的尖端没有实际的质量,但是它能通过激活周围的物质而处于高能量状态. 依赖于材料的损伤方向,激活质量的减少和增加可发生在尺度转变之前或之后.每个尺度区的分段阈值被假定为与裂纹尖端速度的平方$\dot{a}^2$和激活质量密度$\cal {M}$的乘积有关: ${\cal {W}} = {\cal{M}}_{ \downarrow \uparrow } \dot {a}_{ \uparrow \downarrow }^2 $和 ${\cal {D}} = {\cal {M}}^{ \downarrow \uparrow }\dot {a}_{\uparrow \downarrow }^2$. ${\cal {W}}$和${\cal{D}}$分别被称为直接吸收和自耗散能量密度. 正如下标/上标符号所示,激活的质量密度${\cal {M}}_{ \downarrow \uparrow } $和 ${\cal{M}}^{ \downarrow \uparrow }$与裂纹尖端速度$\dot {a}$变化趋势相反,既可增加也可减少. $\dot {a}^2$和$\cal{M}$的互补效应隐含着常用于宇宙物理学建模的膨胀和/或收缩的物理过程.在用于尺度敏感的裂纹尖端的行为时, 激活的质量密度有相同的解释.分段时的多尺度可以由$\cdots$皮观、纳观、微观和宏观$\cdots$组成.因此, 形象地说,材料损伤过程可以通过裂纹扩展过程中非均匀的总体和局部能量的传递来模拟.疲劳裂纹扩展引起的材料损伤被用来阐释由大到小和由慢到快的尺度/时间序,热力学中的冷$\to $热和有序$ \to $无序转换.这一过程正巧与宇宙演化的箭形方向相反, 宇宙演化遵循小$ \to $大和快$\to $慢, 而热力学相反,遵循热$ \to $冷和无序$ \to $有序.为了表示由损伤萌生所造成的类裂缝型缺陷的不均匀性,提出了一个被称为裂纹尖端力学(crack tip mechanics, CTM)的新模式.涉及的范围是模拟原子列之间的界面裂纹或连续体中分叉的切口.假如需要的话, 尺寸和时间的范围可以复盖从皮观到宏观甚至更大.虽然采用疲劳裂纹来说明CTM的基本原理,在宇宙物理学背景中与直接吸收和自耗散相关的膨胀和收缩的情况可以描述裂纹周围激活质量的行为,它们可看为能量的汇或源.奇异性被用来捕获能量的源或汇的特性, 物理上, 两者作为界面的一部分,从数学上看则是不连续的线的一部分. 能量从一种形式变为另一种形式取决于能量吸收或耗散的箭形损伤时间,这之中牵涉到尺度分段和奇异性强度的联合应用.材料组分随时间的劣化是根据指定的设计寿命导出的,从而使材料的响应与加载率的时间历史匹配.2024-T3铝板的皮观/纳观/微观/宏观开裂模型用来说明什么地方可以增加结构的寿命部分.皮观/纳观/微观/宏观/结构系统的性能随时间劣化可以用9个尺度转变物理参数来描述:纳观/微观区有3个($\mu _{na / mi}^\ast ,$ $\sigma _{na / mi}^\ast,d_{na / mi}^\ast )$,微观/宏观区有3个($\mu _{mi / ma}^\ast ,\sigma_{mi / ma}^\ast ,d_{mi / ma}^\ast )$,皮观/纳观区有3个($\mu_{pi/na}^\ast ,\sigma _{pi/na}^\ast ,d_{pi/na}^\ast)$.下标$pi,na,mi,ma$ 和$struc$分别表示皮观、纳观、微观、宏观和结构.只要知道两个相连的尺度敏感参数,在较低尺度的时间相关的局部物理参数就完成了分析连续体的形式论,虽然它们并不需要用实验来知道.更具体地说, 根据皮观 $\to$ 纳观 $\to$ 微观 $\to$宏观分别有1.25/1.00/0.75/0.50的$\lambda $奇异性强度,皮观裂纹、纳观裂纹、微观裂纹和宏观裂纹的转变特征是从时间箭形的指定的寿命预期来确定的.附加的0.25强度的奇异性可用于结构元件. 回想起来, $\lambda =0.5$相应于断裂力学中的应力分量与$r^{0.5}$成反比,$r$是与宏观裂纹尖端的距离.微观裂纹、纳观裂纹和皮观裂纹分别赋予$r^{ - 0.75},r^{ - 1.0},r^{ -1.25}$的奇异性. 箭形时间(以年为单位)取决于问题的定义.设备的关键部件可用$1.5^\pm / 2.5^\pm / 3.5^\pm / 5.5^\pm$寿命分布和总寿命为$13^\pm$年(a)的皮观/纳观/微观/宏观尺度来设计运行. 上标$\pm$表示多于或少于实际运行的时间. 累进损伤被假定为发生在皮观$ \to$纳观$ \to $微观$ \to $宏观方向.同样的方案用于20年总寿命的2024-T3铝板的疲劳损伤, 按照$1.5^\pm /2.5^\pm / 3.5^\pm / 5.5^\pm / 7.0^\pm$的方式将它的寿命分布在皮观、纳观、微观、宏观和结构的尺度上,这样的指定只是满足在每个尺度范围内损伤内部材料结构所用的能量匹配,因此可以强制执行在总寿命的跨度内精确的时间相关的材料性能劣化过程.

     

  • 加载中
计量
  • 文章访问数:  2367
  • HTML全文浏览量:  123
  • PDF下载量:  927
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-11-16
  • 刊出日期:  2010-03-25

目录

    /

    返回文章
    返回

    Baidu
    map